Skip to main content
Log in

Lack of activity of ketorolac in hot-plate test and serotonin binding capacity of brain membranes in rats

  • Pain
  • Published:
Agents and Actions Aims and scope Submit manuscript

Abstract

An increasing number of observations indicate that prostaglandin synthesis inhibition is not a satisfactory explanation for the antinociceptive activity of the non-steroidal anti-inflammatory drugs.

In the hot-plate test performed 1 or 2 h after ketorolac at 40, 70 and 100 mg/kg i.p., the drug does not display any significant antinociceptive activity. Nor, at the two higher doses used, does it affect the cortical and pontine serotonin binding capacity of rat brain membranes 2 h after treatment. The data suggest that this lack of antinociceptive activity in the hot-plate test is associated with the drug's inability to affect the central serotoninergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. S. Lim,Pain. Ann. Rev. Physiol.32, 269–288 (1970).

    Article  Google Scholar 

  2. J. R. Vane,Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol.231, 232–235 (1971).

    PubMed  Google Scholar 

  3. R. J. Flower and J. R. Vane,Inhibition of prostaglandins synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetaminophenol). Nature New Biol.240, 410–411 (1972).

    Article  Google Scholar 

  4. K. Brune, K. D. Rainsford, K. Wagner and B. Peskar,Inhibition by anti-inflammatory drugs of prostaglandin production in cultured macrophages. Factors influencing the apparent drug effects. Naunyn-Schmiedeberg's Arch. Pharmacol.315, 269–276 (1981).

    Article  Google Scholar 

  5. K. McCormack and K. Brune,Dissociation between the antinociceptive and anti-inflammatory effects of the non-steroidal anti-inflammatory drugs. Drugs41, 533–547 (1991).

    PubMed  Google Scholar 

  6. S. Hunskaar,Similar effects of acetylsalicylic acid and morphine on immediate responses to acute noxious stimulation. Pharmacol. Toxicol.60, 167–170 (1987).

    PubMed  Google Scholar 

  7. K. Brune, W. S. Beck, G. Geisslinger, S. Menzel-Soglowek, B. M. Peskar and B. A. Peskar,Aspirin-like drugs may block pain independently of prostaglandin synthesis inhibition. Experientia47, 257–261 (1991).

    PubMed  Google Scholar 

  8. S. V. Abramson and G. Weissman,The mechanism of action of non-steroidal anti-inflammatory drugs. Arth. Rheum.32, 1–9 (1989).

    Google Scholar 

  9. M. G. Buzzi, D. E. Sakas and M. A. Moskowitz,Indomethacin and acetylsalicylic acid block neurogenic plasma protein extravasation in rat dura mater. Eur. J. Pharmacol.165, 251–258 (1989).

    Article  PubMed  Google Scholar 

  10. C. J. Woolf,Central and peripheral components of hyperalgesia that follows peripheral tissue injury. In:Development, Organization and Processing in Somato-sensory Pathways. (Eds. M. Rowe and W. D. Willis) pp. 317–323, Alan R. Liss Inc., New York 1985.

    Google Scholar 

  11. K. W. Shyu and M. T. Lin,Hypothalamic monoaminergic mechanisms of aspirin-induced analgesia in monkeys. J. Neural. Trans.62, 285–288 (1985).

    Article  Google Scholar 

  12. L. Gelgor, S. Cartmell and D. Mitchell,Intracerebroventricular micro-injections of non-steroidal anti-inflammatory drugs abolish reperfusion hyperalgesia in the rat's tail. Pain50, 323–329 (1992).

    Article  PubMed  Google Scholar 

  13. S. Okuyama and H. Aihara,The mode of action of analgesic drugs in adjuvant arthritic rats as an experimental model of chronic inflammatory pain: Possible central analgesic action of acidic nonsteroidal antiinflammatory drugs. Jap. J. Pharmacol.35, 95–103 (1984).

    PubMed  Google Scholar 

  14. I. Jurna and K. Brune,Central effect of the non-steroidal anti-inflammatory agents indomethacin, ibuprofen and diclofenac determined in C fibre-evoked activity in single neurons of the rat thalamus. Pain41, 71–81 (1990).

    Article  PubMed  Google Scholar 

  15. P. I. Wood,Animal models in analgesic testing In:Analgesics: Neurochemical, Behavioral and Clinical Perspectives (Eds. M. Kuhar and G. Pasternak) pp. 175–193, Raven Press, New York 1984.

    Google Scholar 

  16. A. Groppetti, P. C. Braga, G. Biella, M. Parenti, L. Rusconi and P. Mantegazza,Effect of aspirin on serotonin and metenkephalin in brain: Correlation with the antinociceptive activity of the drug. Neuropharmacology27, 499–505 (1988).

    Article  PubMed  Google Scholar 

  17. J. Pascual,Serotonin, serotonin receptors, serotonin receptor subtype agonists and pain. Pain40, 115–116 (1990).

    Article  PubMed  Google Scholar 

  18. G. Kobal, C. Hummel, B. Neurnberg and K. Brune,Effects of pentazocine and acetylsalicylic acid on pain-rating, pain-related evoked potentials and vigilance in relationship to pharmacokinetic parameters Agents and Actions29, 342–359 (1990).

    Article  PubMed  Google Scholar 

  19. J.-P. Wand and C.-M. Teng,Effects of anti-inflammatory drugs on rat hind-paw swelling caused by phospholipase A2 from Naja Naja Atra venom. Naunyn-Schmiedeberg's Arch. Pharmacol.344, 377–381 (1991).

    Google Scholar 

  20. L. A. Pini, G. Vitale and M. Sandrini,Brain serotonin binding capacity, analgesia and drug serum levels after acute treatment with phenazone in rats. Pharmacol. Res.25 (2S), 258–259 (1992).

    Google Scholar 

  21. M. M.-T. Buckley and R. N. Brodgen,Ketorolac. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs39, 86–109 (1990).

    PubMed  Google Scholar 

  22. H. W. H. Rooks, P. J. Maloney, L. D. Shott, M. E. Schuler and H. Sevelius,The analgesic and anti-inflammatory profile of ketorolac and its tormethamine salt. Drugs Exp. Clin. Res.11, 479–492 (1985).

    PubMed  Google Scholar 

  23. C. S. Campbell, P. Krumpe and J. Shepard,Ventilatory effects of ketorolac and morphine in chronic obstructive pulmonary disease. Drug Invest.5, 1–10 (1993).

    Google Scholar 

  24. M. Zimmermann,Ethical guidelines for investigation of experimental pain in conscious animals. Pain16, 109–110 (1983).

    PubMed  Google Scholar 

  25. L. S. Harris and A.-K. Pierson,Some narcotic antagonists in the benzomorphan series. J. Pharmacol. Exp. Ther.143, 141–145 (1964).

    PubMed  Google Scholar 

  26. J. P. Bennet and S. H. Snyder,Serotonin and lysergic acid diethylamide binding in rat brain membranes: Relationship to postsynaptic serotonin receptors. Mol. Pharmacol.12, 373–389 (1976).

    PubMed  Google Scholar 

  27. G. Scatchard,The attraction of proteins for small molecules. Ann. N.Y. Acad. Sci.51, 660–664 (1949).

    Google Scholar 

  28. M. Sandrini, G. Vitale, E. Sternieri, A. Bertolini and L. A. Pini,Effect of chronic treatment of phenazone on the hot-plate test and [3H]-serotonin binding sites in pons and cortex membranes in the rat. Pharmacology47, 84–90 (1993).

    PubMed  Google Scholar 

  29. L. A. Pini, G. Vitale and M. Sandrini,The role of serotonin brain receptors in the analgesic effect of phenazone. Drugs Exp. Clin. Res.19, 13–17 (1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale, G., Sandrini, M. & Pini, L.A. Lack of activity of ketorolac in hot-plate test and serotonin binding capacity of brain membranes in rats. Agents and Actions 41, 184–187 (1994). https://doi.org/10.1007/BF02001914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02001914

Key words

Navigation