International Journal of Salt Lake Research

, Volume 4, Issue 3, pp 265–280 | Cite as

Variations in some physico-chemical parameters in a hypersaline coastal lagoon of Baja California, Mexico

  • Gabriela Montaño Moctezuma
  • L. Fernando Bückle Ramírez
Article

Abstract

San Jose lagoon is a hypersaline body of water located in Mexico in the Baja California Peninsula. The lagoon belongs to a system that lies between the fault ridge known as San Jose Creek. Because of its marine origin, it can be considered as thalassohaline, but its isolation from the ocean has brought about changes in its salt composition. It has an area of 13,500 m2, a mean depth of 80 cm and a total volume of 10,000 m3. It does not desiccate and can be considered as a permanent lagoon. Seasonal variations are small. TheArtemia population in San Jose produces cysts all year. To determine the physico-chemical conditions inducing permanent production of cysts, temperature, salinity, dissolved oxygen, and pH of the lagoon were monitored, as well as relative humidity and wind conditions in the region in different seasons of the year. From spring to summer, differences of 1 mg L−1 of O2, 1°C in water temperature, and 8 g L−1 in salinity were observed, and from summer to winter differences of 3.3 mg L−1, 6.5°C, and 14 g L−1, respectively. Despite small seasonal variations, the lagoon exhibits strong spatial and daily changes that are important for cyst production.

Key words

hypersaline coastal lagoon physico-chemical seasonal variations winds Artemia cysts Baja California Mexico 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G.C. 1958. Some limnological features of a shallow saline meromictic lake. Limnology and Oceanography 3: 259–270.Google Scholar
  2. Bayly, I.A.E. 1967. The fauna and chemical composition of some athalassic saline waters in New Zealand. New Zealand Journal of Marine and Freshwater Research 2: 105–117.Google Scholar
  3. Carpelan, L.H. 1957. Hydrobiology of Alviso salt ponds. Ecology 38 (3): 375–390.Google Scholar
  4. Cochran, W.W.G. 1978. Técnicas de Muestreo. Segunda edición. C.E.C.S.A. México, 507 pp.Google Scholar
  5. Dana, G.L. 1984. Artemia in temporary alkaline ponds near Fallon, Nevada with a comparison of its life history strategies in temporary and permanent habitats. In: S. Jain and P. Moyle (Eds) Vernal Pools and Intermitent Streams, pp. 115–125. Institute of Ecology, University of California at Davis, CA, USA. Pub. No. 28.Google Scholar
  6. Gilchrist, B.M. 1954. Haemoglobin inArtemia. Proceedings of the Royal Society of London Series B 143 (910): 136–148.Google Scholar
  7. Hammer, U.T. 1986. Saline Lake Ecosystems of the World. W. Junk Publishers, Dordrecht, 616 pp.Google Scholar
  8. Harbeck, G.E. Jr 1955. The effect of salinity on evaporation. US Geological Survey Profesional. Paper 272-A: 1–6.Google Scholar
  9. Hutchinson, G.E. 1937. A contribution to the limnology of arid regions. Transactions Connecticut Academy of Arts and Science 33: 47–132.Google Scholar
  10. INEGI. 1984. Síntesis Geográfica del Estado de Baja California. Anexo Cartográfico. Secretaria de Programación y Presupuesto.Google Scholar
  11. Jenkin, P.M. 1936. XIV. Reports of the Perey Staden Expedition to some Rift Valley Lakes in Kenya in 1929. VII. Summary of the ecological results, with especial reference to the alkaline lakes. Annals and Magazine of Natural History 18: 133–181.Google Scholar
  12. Lenz, P.H. 1987. Ecological studies onArtemia: a review. In: P. Sorgeloos et al. (Eds)Artemia Research and its Applications. Vol. 3. Ecology, Culturing, Use in Aquaculture. Universa Press, Wetteren, Belgium, 556 pp.Google Scholar
  13. Lenz, P.H. and Dana, G.L. 1987. Life cycles studies inArtemia: a comparison between a sub tropical and temperate population. In: P. Sorgeloos et al. (Eds)Artemia Research and its Applications. Vol. 3. Ecology, Culturing, Use in Aquaculture. Universa Press, Wetteren, Belgium, 556 pp.Google Scholar
  14. Löffler, H. 1959. Beiträge zur Kenntnis der iranischen Binnengewässer. I. Der Niriz See und sein Einzugsgebiet. Int. Rev. Ges. Hydrobiol. 44: 227–276.Google Scholar
  15. Morales, E.R. and Bückle, L.F. 1991. Levantamiento Topográfico con Tránsito y Cinta. Cálculos con Lotus 1 2 3. Comunicaciones Académicas. Serie de Acuicultura CICESE, Ensenada, B.C., México, pp. 1–24.Google Scholar
  16. Oca, M. 1968. Topografía. 3a. edición. Ed. Representaciones y Servicios de Ingeniería S.A. México, 344 pp.Google Scholar
  17. Scelzo, M.A. and J.F. Voglar. 1980. Ecological study of theArtemia populations in Boca Chica salt lake, Margarita Island, Venezuela. In: G.P. Persoone, P. Sorgeloos, O. Roels and Jaspers (Eds) The Brine ShrimpArtemia. Vol. 3. Ecology, Culturing, Use in Aquaculture, pp. 115–125. Universa Press, Wetteren, Belgium, 456 pp.Google Scholar
  18. Vareschi, E. 1982. The ecology of Lake Nakuru (Kenya). III. Abiotic factors and primary production. Oecologia (Berl.) 55: 81–101.Google Scholar
  19. Wetzel, R.G. 1973. Limnology. 2nd. Edition, W.B. Saunders Company, Toronto, 767 pp.Google Scholar
  20. Williams, W.D. 1981. Inland salt lakes: an introduction. Hydrobiologia 81: 1–14.Google Scholar
  21. Wirick, C.D. 1972.Dunaliella-Artemia plankton community of the Great Salt Lake, Utah. MS Thesis, University of Utah, USA, 44 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Gabriela Montaño Moctezuma
    • 1
  • L. Fernando Bückle Ramírez
    • 1
  1. 1.Department of AquacultureCentro de Investigación Cientifica y de Educación Superior de Ensenada (CICESE)EnsenadaMéxico

Personalised recommendations