Acta Neurochirurgica

, Volume 120, Issue 1–2, pp 26–32 | Cite as

Arteriovenous malformation and diaschisis

  • K. Tanaka
  • Y. Yonekawa
  • Y. Kaku
  • K. Kazekawa
Clinical Articles

Summary

We investigated the haemodynamic dysfunction and secondary thalamic and brainstem atrophy in 24 patients with angiographically proven cerebral arteriovenous malformations (AVM) and no clinical history of cerebral haemorrhage. Cerebral blood flow (CBF) was measured by the method using either stable Xenon or single photon emission computerized tomography (SPECT). Morphological changes in the thalamus and brainstem were evaluated by magnetic resonance imaging (MRI). Two factors are considered to influence hypoperfusion in the ipsilateral cerebral and contralateral cerebellar hemisphere and secondary atrophy of the thalamus and brainstem. One is the size of the nidus and the other is the involvement of the basal ganglia. It is presumed that continuous haemodynamic stress over a long period of time may cause irreversible histological changes in areas remote from the lesion, especially in the AVM which demonstrates involvement of the basal ganglia or a large nidus.

Keywords

Arteriovenous malformation basal ganglia cerebral blood flow diaschisis thalamus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnett GH, Little JR, Ebrahim ZY, Jones SC, Friel HT (1987) Cerebral circulation during arteriovenous malformation operation. Neurosurgery 20: 836–842PubMedGoogle Scholar
  2. 2.
    Homan RW, Devous MD, Stokely EM, Bonte FJ (1986) Quantification of intracerebral steal in patients with arteriovenous malformation. Arch Neurol 43: 779–785PubMedGoogle Scholar
  3. 3.
    Iizuka H, Sakatani K, Young W (1990) Neural damage in the rat thalamus after cortical infarcts. Stroke 21: 790–794PubMedGoogle Scholar
  4. 4.
    Kempinsky WH (1966) Vascular and neural factors in diaschisis with focal cerebral ischemia. Res Publ Assoc Nerv Ment Dis 41: 92–115Google Scholar
  5. 5.
    Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J (1980) Effects of stroke on local cerebral metabolism and perfusion: mapping by emission computed tomography of 18 FDG and 13 NH 3. Ann Neurol 8: 47–60CrossRefPubMedGoogle Scholar
  6. 6.
    Kuriyama Y, Sawada T, Karasawa J, Kikuchi H (1984) The mapping image of local cerebral blood flow by use of stable Xenon and CT. Proceeding of the 4th annual meeting of the Japanese Congress of Neurological Surgeons 4: 154–165Google Scholar
  7. 7.
    Marks MP, Donahue JO, Fabricant JI, Frankel KA, Phillips MH, Delapaz RL, Enzmann DR (1988) Cerebral blood flow evaluation of arteriovenous malformations with stable Xenon CT. AJNR 9: 1169–1175PubMedGoogle Scholar
  8. 8.
    Menon D, Weir B (1979) Evaluation of cerebral blood flow in arteriovenous malformations by the Xenon 133 inhalation method. Can J Neurol Sci 6: 411–416PubMedGoogle Scholar
  9. 9.
    Meyer JS, Naritomi H, Sakai F, Ishihara N, Grant P (1979) Regional cerebral flow, diaschisis, and steal after stroke. Neurol Res 1: 101–119PubMedGoogle Scholar
  10. 10.
    Nornes H, Grip A (1980) Haemodynamic aspects of cerebral arteriovenous malformations. J Neurosurg 53: 456–464PubMedGoogle Scholar
  11. 11.
    Okabe T, Meyer JS, Okayasu H, Harper R, Rose J, Grossman RG, Centeno R, Tachibana H, Lee YY (1983) Xenon-enhanced CT CBF measurements in cerebral AVM's before and after excision. J Neurosurg 59: 21–31PubMedGoogle Scholar
  12. 12.
    Pappata S, Mazoyer B, Dinh T, Cambon H, Levasseur M, Baron JC (1990) Effects of capsular or thalamic stroke on metabolism in the cortex and cerebellum: a positron tomography study. Stroke 21: 519–524PubMedGoogle Scholar
  13. 13.
    Pertuiset B, Ancri D, Clergue F (1982) Preoperative evaluation of haemodynamic factors in cerebral arteriovenous malformations for selection of a radical surgery tactic with special reference to vascular autoregulation disorders. Neurol Res 4: 209–233PubMedGoogle Scholar
  14. 14.
    Shenkin HA, Spitz EB, Grant FC, Kety SS (1948) Physiologic studies of arteriovenous anomalies of the brain. J Neurosurg 5: 165–172Google Scholar
  15. 15.
    Tamaki N, Lin T, Asada M, Fujita K, Tominaga S, Kimura M, Ehara K, Matsumoto S (1990) Modulation of blood flow following excision of a high-flow cerebral arteriovenous malformation. Case report. J Neurosurg 72: 509–512PubMedGoogle Scholar
  16. 16.
    Tamura A, Tahira Y, Nagashima H, Kirino T, Gotoh O, Hojo S, Sano Kenji (1991) Thalamic atrophy following cerebral infarction in the territory of the middle cerebral artery. Stroke 22: 615–618PubMedGoogle Scholar
  17. 17.
    Tarr RW, Johnson DW, Rutigliano M, Hecht ST, Pentheny S, Jungreis CA, Horton JA, Yonas H (1990) Use of acetazolamidechallenge Xenon CT in the assessment of cerebral blood flow dynamics in patients with arteriovenous malformations. AJNR 11: 441–448PubMedGoogle Scholar
  18. 18.
    Wise R, Gibbs J, Frackowiak R, Marshall J, Jones T (1986) No evidence for transhemispheric diaschisis after human cerebral infarction. Stroke 17: 853–861PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • K. Tanaka
    • 1
  • Y. Yonekawa
    • 1
  • Y. Kaku
    • 1
  • K. Kazekawa
    • 1
  1. 1.Department of NeurosurgeryNational Cardiovascular CenterOsakaJapan

Personalised recommendations