Advertisement

Basic Research in Cardiology

, Volume 75, Issue 1, pp 97–104 | Cite as

Functional alterations of cardiac subcellular structures during energy deficiency in relation to the metabolic state of the heart muscle cell

  • P. G. Spieckermann
  • M. M. Gebhard
  • G. G. Göring
  • H. Kahles
  • V. A. Mezger
  • C. J. Preuße
  • M. Stellwaag
Article

Summary

The functional behaviour of membrane systems of the cardiac cell during oxygen deficiency was analyzed and the alterations were related to the metabolic state of the tissue as an index of injury.
  1. 1.

    The retention function of the cell membrane for proteins. With increasing energy deficiency the cardiac sarcolemma loses its ability to retain macromolecules (myoglobin, enzymes) within the cell. Close correlations exist between protein release and oxygen supply as well as ATP content of the tissue.

     
  2. 2.

    Function of isolated mitochondria after ischemia. In parallel with a strong impairment of oxidative phosphorylation (decrease of QO2, RCI values, phosphorylation rates) the Ca++-transporting activity of mitochondria is continuously depressed with decreasing myocardial ATP.

     
  3. 3.

    Function of isolated sarcoplasmic reticulum after ischemia. With breakdown of high energy phosphates during ischemia rate and extent of Ca++ binding both decrease markedly.

     

Keywords

Ischemia Sarcoplasmic Reticulum Metabolic State Protein Release Ischemia Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Funktionelles Verhalten subzellulärer Strukturen des Myokards während Sauerstoffmangel in Relation zum Metabolitstatus der Herzmuskelzelle

Zusammenfassung

Das funktionelle Verhalten von Membransystemen der Herzmuskelzelle während Sauerstoffmangel wurde untersucht und die Veränderungen in Beziehung gesetzt zum Metabolitstatus des Gewebes als Index für die Zellschädigung.
  1. 1.

    Die Retentionsfunktion der Zellmembran für Proteine. Mit zunehmendem Energiedefizit verliert die Zellmembran die Fähigkeit, Makromoleküle (Myoglobin, Enzyme) innerhalb der Zelle zu retinieren. Zwischen Proteinfreisetzung und O2-Versorgung bzw. Gewebs-ATP bestehen enge Korrelationen.

     
  2. 2.

    Funktion isolierter Mitochondrien nach Ischämie. Parallel zur Einschränkung der oxidativen Phosphorylierung (Abnahme von QO2, RCI-Werten, Phosphorylierungsraten) nimmt die Ca++-Transport-Aktivität der Mitochondrien mit Abfall des Gewebs-ATP kontinuierlich ab.

     
  3. 3.

    Funktion des isolierten sarkoplasmatischen Retikulums nach Ischämie. Mit dem Zerfall der energiereichen Phosphate während Ischämie werden Rate und Ausmaß der Ca++-Bindung an das SR stark eingeschränkt.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Leiris, J., D. Breton, D. Feuvray, E. Coraboeuf: Lactico-dehydrogenase release from perfused rat heart under the effect of abnormal media. Arch. Int. Physiol. Biochem.77, 749 (1969).Google Scholar
  2. 2.
    De Leiris, J., D. Feuvray, C. Come: Acetylcholine-induced release of lactate dehydrogenase from isolated perfused rat heart. J. Molec. Cell. Cardiol.4, 357 (1972).CrossRefGoogle Scholar
  3. 3.
    Englhardt, A., G. Schmidt-Sodingen, H. Lange: Metabolitgehalt und Enzympermeabilität isolierter menschlicher Blutzellen bei Substratmangel und Zusatz von Stoffwechselgiften. Enzym. biol. clin.10, 258 (1969).Google Scholar
  4. 4.
    Gebhard, M. M., H. Denkhaus, K. Sakai, P. G. Spieckermann: Relations between energy metabolism and enzyme release. J. Molec. Med.2, 271 (1977).Google Scholar
  5. 5.
    Göring, G. G., W. G. Nayler, P. G. Spieckermann: The release of calcium from cardiac mitochondria: The importance of the Ca/protein ratio. Basic Res. Cardiol.72, 77 (1977).CrossRefPubMedGoogle Scholar
  6. 6.
    Göring, G. G., P. G. Spieckermann: Ca2+ uptake and-release phenomena from cardiac mitochondria under normal and ischemic conditions. Basic Res. Cardiol.73, 126 (1978).PubMedGoogle Scholar
  7. 7.
    Hearse, D. J., E. B. Chain: Effect of glucose on enzyme release from, and recovery of the anoxic myocardium. In:Dhalla, N. S. (Ed.): Myocardial metabolism. Recent advances in studies on cardiac structure and metabolism, Vol. 3, p. i (Baltimore 1973).Google Scholar
  8. 8.
    Kahles, H., G. Göring, H. Nordbeck, C. J. Preusse, P. G. Spieckermann: Functional behaviour of isolated heart muscle mitochondria after in situ ischemia. Polarographic analysis of mitochondrial oxidative phosphorylation. Basic Res. Cardiol.72, 563 (1977).PubMedGoogle Scholar
  9. 9.
    Katz, A. M.: Regulatory effects adenosinetriphosphate on the cardiac contractile process. Basic Res. Cardiol.75, 103 (1980).Google Scholar
  10. 10.
    Mancini, A., B. Galanti, G. Gnisti: Veränderungen des ATP-Gehaltes im Lebergewebe der Maus bei experimenteller Virus-MHV-3-Hepatitis. Enzym. biol. clin.6, 279 (1966).Google Scholar
  11. 11.
    Sakai, K., P. G. Spieckermann: Effects of reserpine and propranolol on enzyme release resulting from anoxia in the isolated perfused guinea pig heart. Naunyn.-Schmiedebergs Arch. Pharmacol.291, 123 (1975).CrossRefPubMedGoogle Scholar
  12. 12.
    Sakai, K., M. Gebhard, P. G. Spieckermann, H. J. Bretschneider: Enzyme release resulting from ischemia in the isolated perfused guinea pig heart. J. Molec. Cell. Cardiol.7, 827 (1975).CrossRefGoogle Scholar
  13. 13.
    Spieckermann, P. G., M. Gebhard, K. Kalbow, D. Knoll, F. Kohl, H. Nordbeck, K. Sakai, H. J. Bretschneider: Freisetzung von Enzymen aus der Herzmuskelzelle während Sauerstoffmangel. Verh. dtsch. Ges. Kreisl.-Forschg.39, 193 (1973).Google Scholar
  14. 14.
    Spieckermann, P. G., M. M. Gebhard, H. Nordbeck: Role of energy metabolism in enzyme retention. A study on isolated perfused canine hearts. Experientia31, 1046 (1975).PubMedGoogle Scholar
  15. 15.
    Stellwaag, M., M. M. Gebhard, G. G. Göring, H. Kahles, C. J. Preusse, P. G. Spieckermann: Functional behaviour of isolated cardiac relaxing system after ‘in situ’ ischemia. Pflügers Arch.379, Suppl. R59 (1979).CrossRefGoogle Scholar
  16. 16.
    Zierler, K. L.: Increased muscle permeability to aldolase, produced by depolarisation and by metabolic inhibitors. Amer. J. Physiol.193, 534 (1958).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1980

Authors and Affiliations

  • P. G. Spieckermann
    • 1
  • M. M. Gebhard
    • 1
  • G. G. Göring
    • 1
  • H. Kahles
    • 1
  • V. A. Mezger
    • 1
  • C. J. Preuße
    • 1
  • M. Stellwaag
    • 1
  1. 1.Institute of Physiology IUniversity of GoettingenGoettingen

Personalised recommendations