Basic Research in Cardiology

, Volume 75, Issue 1, pp 2–12 | Cite as

Quantitative aspects of the calcium concept of excitation contraction coupling-a critical evaluation

  • W. Hasselbach


The role of sarcoplasmic reticulum membranes in the calcium concept of muscle activation is critically evaluated applying data and findings obtained by in-vitro studies with isolated sarcoplasmic reticulum membrane vesicles.


Public Health Calcium Muscle Activation Critical Evaluation Sarcoplasmic Reticulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Quantitative Aspekte des Calciumkonzeptes der Kopplung zwischen Erreger und Kontraktion-eine kritische Bewertung


Die Rolle des sarkoplasmatischen Retikulums im Calciumkonzept der Muskelaktivierung wird anhand von Daten und Beobachtungen, die in In-vitro-Studien an der isolierten sarkoplasmatischen Membran erhoben wurden, kritisch bewertet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marsh, B. B.: A factor modifying muscle fibre synaeresis. Nature167, 1065–1066 (1951).PubMedGoogle Scholar
  2. 2.
    Hasselbach, W., M. Makinose: Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z.333, 518–528 (1961).PubMedGoogle Scholar
  3. 3.
    Ebashi, S., M. Endo: Ca ion and muscle contraction. Progr. Biophys. Mol. Biol.18, 123–183 (1968).CrossRefGoogle Scholar
  4. 4.
    Hasselbach, W.: Relaxation and the sarcotubular calcium pump. Fed. Proc.23, 909–912 (1964).PubMedGoogle Scholar
  5. 5.
    Rüdel, R., S. R. Taylor: Aequorin luminescence during contraction of amphibian skeletal muscle. J. Physiol. (London)233, 5P-6P (1973).Google Scholar
  6. 6.
    Bremel, R. D.: Myosin linked calcium regulation in vertebrate smooth muscle. Nature252, 405–407 (1974).PubMedGoogle Scholar
  7. 7.
    Constantin, L. L., C. Franzini-Armstrong, R. J. Podolsky: Localization of calcium-accumulating structures in striated muscle fibers. Science147, 158–160 (1965).PubMedGoogle Scholar
  8. 8.
    Beil, F. U., D. von Chak, W. Hasselbach, H. H. Weber: Competition between oxalate and phosphate during active calcium accumulation by sarcoplasmic vesicles. Z. Naturforsch.32c, 281–287 (1977).Google Scholar
  9. 9.
    Winegrad, S.: The intracellular site of calcium activation of contraction in frog skeletal muscle. J. Gen. Physiol.55, 77–88 (1970).CrossRefPubMedGoogle Scholar
  10. 10.
    Hasselbach, W.: in Mol. Bioenergetics and Macromolecular Biochemistry, Meyerhof Symposion 1970, pp. 149–171: The sarcoplasmic calcium pump. (Berlin, Heidelberg, New York 1972).Google Scholar
  11. 11.
    Meissner, G., S. Fleischer: Characterization of sarcoplasmic reticulum from skeletal muscle. Biochim. Biophys. Acta241, 356–378 (1971).PubMedGoogle Scholar
  12. 12.
    Peachey, L. D.: The sarcoplasmic reticulum and transverse tubules of the frogs's sartorius. J. Cell. Biol.25, 209–231 (1965).PubMedGoogle Scholar
  13. 13.
    Suko, J., W. Hasselbach: Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Eur. J. Biochem.64, 123–130 (1976).CrossRefPubMedGoogle Scholar
  14. 14.
    Portzehl, H., R. C. Caldwell, J. C. Rüegg: The dependence of contraction and relaxation of muscle fibres from the crab maia squinado on the internal concentration of free calcium ions. Biochim. Biophys. Acta79, 581–591 (1964).PubMedGoogle Scholar
  15. 15.
    Hasselbach, W.: The reversibility of the sarcoplasmic calcium pump. Biochim. Biophys. Acta515, 23–53 (1978).PubMedGoogle Scholar
  16. 16.
    Duggan, P. I., A. Martonosi: Sarcoplasmic reticulum. IX. The permeability of sarcoplasmic reticulum membranes. J. Gen. Physiol.56, 147–167 (1970).PubMedGoogle Scholar
  17. 17.
    Wendt-Gallitelli, M. F., H. Wolburg, W. Schlote, M. Schwegler C. Holubarsch, andR. Jacob: Prospects of X-ray microanalysis in the study of pathophysiology of myocardial contraction. Basic Res. Cardiol.75, 66–72 (1980).PubMedGoogle Scholar
  18. 18.
    Ikemoto, N., G. M. Bhatnagar, B. Nagy, J. Gergely: Interaction of divalent cations with the 55,000 dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichronism. J. Biol. Chem.247, 7835–7837 (1972).PubMedGoogle Scholar
  19. 19.
    König, V., W. Hasselbach: Unpublished results.Google Scholar
  20. 20.
    Fleckenstein, A.: in: Calcium and the Heart. Ed.P. Harris, L. H. Opie: Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention on production of myocardial lesions (New York 1971).Google Scholar
  21. 21.
    Potter, J. D., J. Gergely: Troponin, tropomyosin, and actin interactions in the Ca2+ regulation of muscle contraction. Biochem.13, 2679–2703 (1974).Google Scholar
  22. 22.
    Beeler, T., A. Martonosi: The relationship between membrane potential and Ca2+ fluxes in isolated sarcoplasmic reticulum vesicles. FEBS Lett.98, 173–176 (1979).PubMedGoogle Scholar
  23. 23.
    Mermier, P., W. Hasselbach: Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum. Eur. J. Biochem.69, 79–86 (1976).CrossRefPubMedGoogle Scholar
  24. 24.
    Rauch, B., D. von Chak, W. Hasselbach: An estimate of the kinetics of calcium binding and dissociation of the sarcoplasmic reticulum transport ATPase. FEBS Lett.93, 65–68 (1978).CrossRefPubMedGoogle Scholar
  25. 25.
    Sumida, M., T. Wang, F. Mandel, J. P. Froehlich, A. Schwartz: Transient kinetics of Ca2+ transport of sacoplasmic reticulum. J. Biol. Chem.253, 8772–8777 (1978).PubMedGoogle Scholar
  26. 26.
    Tada, M., M. A. Kirchberger, A. M. Katz: Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′∶5′-monophosphate-dependent protein kinase. J. Biol. Chem.250, 2640–2647 (1975).PubMedGoogle Scholar
  27. 27.
    Schwartz, A., M. L. Entman, K. Kaniike, L. K. Lane, W. B. van Winkle, E. P. Bornet. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase. Biochim. Biophys. Acta426, 57–72 (1976).PubMedGoogle Scholar
  28. 28.
    Jones, L. R., H. R. Besch, jr., A. M. Watanabe: Monovalent cation stimulation of Ca2+ uptake by cardiac membrane vesicles. J. Biol. Chem.252, 3315–3323 (1977).PubMedGoogle Scholar
  29. 29.
    Scarpa, A., J. R. Williamson: In: Calcium Binding Proteins. Eds.W. Drabikowski et al. pp. 547–584: Calcium binding and calcium transport by subcellular fractions of heart (Amsterdam 1974).Google Scholar
  30. 30.
    Julian, F. J.: The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol.218, 117–145 (1971).PubMedGoogle Scholar
  31. 31.
    Dancker, P.: The modification of actomyosin ATPase activity by tropomyosintroponin and its dependence on ionic strength, ATP-concentration, and actin-myosin ratio. Z. Naturforsch.29c, 496–505 (1974).Google Scholar
  32. 32.
    Bremel, R. D., A. Weber: Cooperation within actin filament in vertebrate skeletal muscle. Nature New Biology238, 97–101 (1972).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1980

Authors and Affiliations

  • W. Hasselbach
    • 1
  1. 1.Abt. PhysiologieMax-Planck-Institut für medizin. ForschungHeidelberg 1Germany

Personalised recommendations