Netherlands Journal of Plant Pathology

, Volume 96, Issue 5, pp 273–289 | Cite as

The influence of Verticillium dahliae and drought on potato crop growth. 1. effects on gas exchange and stomatal behaviour of individual leaves and crop canopies

  • A. J. Haverkort
  • D. I. Rouse
  • L. J. Turkensteen
Article

Abstract

Potato (Solanum tuberosum L.) plants cv.Saturna were subjected to infection withVerticillium dahliae and drought stress. At the early stages of growth, stomatal conductance, transpiration and net photosynthesis were measured at light saturation (PAR>300 m−2) on individual leaves and with mobile field equipment with the aid of field enclosures. No significant changes in stomatal conductance and gas exchange characteristics occurred as a result ofV. dahliae instomatal conductance, transpiration and and photosynthetic rates, especially on older leaves and on plants exposed to direct sunlight for a longer period of time. In combination with drought,V. dahliae only occasionally showed interaction; their effects being less than additive. High values of coefficients of variatoon necessitated a high number of measurements per treatment; the more so in the inoculated plants which shows thatV. dahliae seems to affect certain leaves while not affecting others early in growth. Crop photosynthesis was less reduced byV. dahliae than individual leaf photosynthesis due to the levelling effect of integration over the whole canopy and possibly through a stimulation of the top leaves. The upper non-affected leaves are responsible for the bulk of photosynthetic crop activity. The results indicate that following an infection withV. dahliae photosynthesis is reduced early in growth as a result of drought stress in the leaves.

Samenvatting

Aardappelplanten (Solanum tuberosum L.) cv.Saturna werden onderworpen aan stress als gevolg vanVerticillium dahliae en droogte. In vroege stadia van de groei werden stomataire geleiding, transpiratie en netto fotosynthese bij lichtverzadiging (PAR>300 W m−2) gemeten aan individuele bladeren en met een mobiel instrumentarium met behulp van gewaskappen. Er werden geen significante verschillen gevonden in de waarden van de stomataire geleiding en de gasuitwisslingskarakteristieken als gevolg vanV. dahliae-besmetting tot een maand na opkomst. Daarna leidde infectie metV. dahliae tot een afname van de stomataire geleiding, transpiratie en netto fotosynthese, speciaal bij oudere bladeren en bij planten die meer aan zonlicht waren blootgesteld. Soms vertoondeV. dahliae interactie met droogte en bleken beide effecten minder dan optelbaar. De hoge waarden van de variatiecoëfficiënten maakten een groot aantal metingen per behandeling noodzakelijk; dit was vooral het geval bij metV. dahliae geïnfecteerde planten hetgeen aantoont datV. dahliae vooral in het begin van de groei niet alle bladeren in gelijke mate aantast. Door de matigende invloed van de integratie van alle bladlagen en mogelijk doordat de bovenste bladeren werden gestimuleerd, werd de totale gewasfotosynthese in mindere mate beïnvloed doorV. dahliae dan de individuele bladfotosynthese. De bovenste niet geïnfecteerde bladeren bleken verantwoordelijk voor het grootste gedeelte van de gewas-fotosynthese. De resultaten tonen aan, dat volgend op een infectie metV. dahliae, de fotosynthese reeds in een vroeg stadium van de groei wordt verminderd als een gevolg van droogtestress in de bladeren.

Additional keywords

Canopy enclosure stomatal conductance light response curve light use efficiency photosynthesis Solanum tuberosum L. transpiration water use efficiency 

References

  1. Bodlaender, K.B.A., 1977. Potatoes. In: Th. Alberda et al. (Eds), Crop photosynthesis: methods and compilation of data obtained with a mobile field equipment. Agricultural Research Report 865. Pudoc Wageningen pp: 31–36.Google Scholar
  2. Bodlaender, K.B.A., Waart, M. van de & Marinus, J., 1986. Effects of drought on water use, photosynthesis and transpiration of potatoes. II Drought, photosynthesis and transpiration. In: A.G.M. Beekman et al. (Eds), Potato Research of Tomorrow. Pudoc, Wageningen; p. 4–54.Google Scholar
  3. Bollen, G.J., Hoekstra, O., Scholte, K., Hofman, T.W., Celetti, M.J. & Schirring, A., 1989. Incidence of soibiorne pathogens in potato related to the frequency of potato growing on a clay loam. In: Vos, J., Loon, C.D. van & Bollen, G.J. (Eds), Effects of crop rotation on potato production in the temperate zones. Kluwer, Dordrecht; p. 203–222.Google Scholar
  4. Bowden, R.L. & Rouse, D.I., 1990a. Effects ofVerticillium dahliae on gas exchange of potato. Phytopathology 80: (in press).Google Scholar
  5. Bowden, R.L. & Rouse, D.I., 1990b. Chronology of gas exchange effects and growth effects ofVerticillium dahliae infection in potato. Phytopathology 80: (in press).Google Scholar
  6. Bowden, R.L. Rouse, D.I. & Sharkey, T.D., 1990. Mechanisms of photosynthesis decrease byVerticillium dahliae in potato. Plant Physiology 92: (in press).Google Scholar
  7. Duniway, J.M. & Slayter, R.D., 1971. Gas exchange studies on the transpiration and photosynthesis of tomato leaves affected byFusarium oxysporum f.sp.lycospercici. Phytopathology 61: 1377–1381.Google Scholar
  8. Dwelle, R.B., Hurley, P.J. & Pavek, J.J., 1983. Photosynthesis and stomatal conductance of potato clones (Solanum tuberosum L.). Comparative differences in diurnal patterns, response to light levels and assimilation through upper and lower leaf surfaces. Plant Physiology 72: 172–176.Google Scholar
  9. Haverkort, A.J. & Bicamumpaka, M., 1986. Correlation between intercepted radiation and yield of potato crops infested byPhytophthora infestans in Central Africa. Netherlands Journal of Plant Pathology 92: 239–247.Google Scholar
  10. Haverkort, A. J., Vos, J., Groenwold, J. & Hoekstra, O., 1989. Crop characteristics and yield reductions of potato due to biotic stress in short crop rotations. In: Vos, J., Loon, C.D. van & Bollen, G.J. (Eds), Effects of crop rotation on potato production in the temperate zones. Kluwer, Dordrecht; p. 273–290.Google Scholar
  11. Idso, S.B., Allen, S.G., Kimball, B.A. & Choudhury, B.J., 1989. Problems with porometry: measuring net photosynthesis by leaf chamber techniques. Agronomy Journal 81: 475–479.Google Scholar
  12. Kotcon, J.B., Rouse, D.I. & Mitchell, J.E., 1985. Interactions ofVerticillium dahliae, Colletotrichum coccedes, Rhizoctonia solani andPratylenchus penetrans in the early dying syndrome of Russet Burbank potatoes. Phytopathology 75: 68–74.Google Scholar
  13. Louwerse, W. & Oorschot, J.L.P., 1969. An assembly for routine measurements of photosynthesis, respiration and transpiration of intact plants under controlled conditions. Photosynthetica 3: 305–315.Google Scholar
  14. Louwerse, W., 1980. Effects of CO2 concentration and irradiance on the stomatal behaviour of maize, barley and sunflower plants in the field. Plant, Cell and Environment 3: 391–398.Google Scholar
  15. Louwerse, W., & Eikhoudt, J.W., 1975. A mobile laboratory for measuring photosynthesis, respiration and transpiration of field crops. Photosynthetica 9: 31–34.Google Scholar
  16. Mathre, D.E., 1968. Photosynthetic activities of cotton plants infected withVerticillium alboatrum. Phytopathology 58: 137–141.Google Scholar
  17. McCree, K.J., 1988. Sensitivity of sorghum grain yields to ontogenetic changes in respiration coefficients. Crop Science 28: 114–120.Google Scholar
  18. Rowe, R.C., Davies, J.R., Powelson, M.L. & Rouse, D.I., 1987. Potato early dying: causal agents and management. Plant Disease 71: 482–489.Google Scholar
  19. Schapendonk, A.H.C.M., Spitters, C.J.T. & Groot, P.J., 1989. Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars. Potato Research 32: 17–32.Google Scholar
  20. Scholte, K & s'Jacob, J.J., 1989. Synergistic interactions betweenRhizoctonia solani Kühn,Verticillium dahliae Kleb,Meloidogyne spp. andPratylenchus neglectus (Rensch) Chitwood & Oteifa, in potato. Potato Research 32: 387–398.Google Scholar
  21. Scholte, K., Veenbaas-Rijks, J.W. & Labruyere, R.E., 1985. Potato growing in short rotations and the effect ofStreptomyces spp.,Colletotrichum coccodes, Fusarium tabacinum andVerticillium dahliae on plant growth and tuber yield. Potato Research 28: 431–438.Google Scholar
  22. Vos, J. & Groenwold, J., 1988. Water relations of potato leaves. I Diurnal changes, gradients in the canopy and effects of leaf insertion number, cultivar and drought. Annals of Botany 62: 363–371.Google Scholar
  23. Vos, J. & Groenwold, J., 1989a. Characteristics of photosynthesis and conductance of potato canopies and the effects of cultivar and transient drought. Field Crops Research 20: 237–250.Google Scholar
  24. Vos, J. & Groenwold, J., 1989b. Genetic differences in water use efficiency, stomatal conductance and carbon isotope fractionation in potato. Potato Research 32: 113–122.Google Scholar
  25. Vos, J. & Oyarzun, P., 1987. Photosynthesis and stomatal conductance of potato leaves — effects of leaf age, irradiance and leaf water potential. Photosynthesis Research 11: 253–264.Google Scholar
  26. Zazzerini, A., 1975. Photosynthesis and respiration in two sweet pepper cultivars infected withVerticillium dahliae. Annali della Facolta di Agraria, Perugia 30: 157–165.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1990

Authors and Affiliations

  • A. J. Haverkort
    • 1
  • D. I. Rouse
    • 1
    • 2
  • L. J. Turkensteen
    • 3
  1. 1.Centre for Agrobiological Research (CABO)Wageningenthe Netherlands
  2. 2.Department of Plant PathologyMadisonUnited States of America
  3. 3.Research Institute for Plant Protection (IPO)Wageningenthe Netherlands

Personalised recommendations