Netherlands Journal of Plant Pathology

, Volume 91, Issue 6, pp 253–264 | Cite as

Pectic enzymes associated with phosphate-stimulated infection of French bean leaves by Botrytis cinerea

  • J. van den Heuvel
  • L. P. Waterreus


Botrytis cinerea readily produced polygalacturonases and pectin esterases in shake cultures of Richards' medium containing orthophosphate and no pectinaceous material or galacturonic acid.

In inoculum droplets containing glucose and KH2PO4 or glucose and Na-ATP, which were used to evoke a susceptible reaction in French bean leaves,B. cinerea produced pectic enzymes. However, in inoculum droplets containing glucose but lacking phosphate, used to evoke a resistant reaction, activities of pectic enzymes remained low. As the enzyme activities already increased during the penetration stage of the infection process, it is assumed that these phosphatestimulated activities of pectic enzymes are, at least partially, responsible for the phosphatestimulated susceptible interaction between French bean leaves andB. cinerea.

Electrophoresis in pectin-polyacrylamide gels showed that two polygalacturonases with a high isoelectric point value were associated with the penetration stage of the infection process.


Botrytis cinerea vormde vlot polygalacturonasen en pectineësterasen in schudculturen in Richards' medium dat wel orthofosfaat maar geen pectineachtig materiaal of galacturonzuur bevatte.

In inoculumdruppels met glucose +KH2PO4 of met glucose + Na-ATP, waarmee een vatbare reactie in bonebladeren kon worden opgewekt, vormdeB. cinerea verschillende pectolytische enzymen. In inoculumdruppels met glucose maar zonder fosfaat, waarmee een resistente reactie werd teweeggedbracht, bleeff de activiteit van pectolytische enzymen gering.

Aangezien de enzymactiviteiten al begonnen toe te nemen tijdens de binnendringingsfase van het infectieproces, wordt verondersteld dat deze door fosfaat gestimuleerde activiteiten van pectolytische enzymen althans ten dele verantwoordelijk ziijn voor de door fosfaat gestimuleerde vatbare interactie tussen bonebladeren enB. cinerea.

Elektroforese in pectine-polyacrylamidegels liet de toename zien van twee polygalacturonasen met een hoog isoëlektrisch punt tijdens de binnendringingsfase van het infectieproces.

Additional keywords

polygalacturonases pectin esterases orthophosphate ATP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akutasu, K., Kobayashi, Y., Matsuzawa, Y., Watanabe, T., Kō, K. & Misato, T., 1981. Morpholigical studies on infection process of cucumber leaves by conidia ofB. cinerea stimulated with various purine-related compounds. Ann. phytopath. Soc. Japan 47: 234–243.Google Scholar
  2. Ayers, W.A., Papavizas, G.C. & Diem, A.F., 1966. Polygalacturonate trans-eliminase and polygalacturonase production byRhizoctonia solani. Phytopathology56: 1006–1011.Google Scholar
  3. Boothby, D., 1981. Enhancement of polygalacturonase activity by potassium phosphate in liquid culture ofPhialophora radiciicola var.radicicola. Trans. Br. mycol. Soc. 77: 639–641.Google Scholar
  4. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities protein utilizing the principle of protein-dye binding, Analyt. Biochem. 72: 248–254.PubMedGoogle Scholar
  5. Brown, A.E. & Adikaram, N.K.B., 1982. The differential inhibition of pectic enzymes fromGlomerella cingulata andBotrytis cinerea by a cell wall protein fromCapsicum annuum fruit. Phytopath. Z. 105: 27–38.Google Scholar
  6. Brown, A.E. & Adikaram, N.K.B., 1983. A role for pectinase and protease inhibitors in fungal rot development in tomato fruits. Phytopath. Z. 106: 239–251.Google Scholar
  7. Byrde, R.J.W., 1982. Fungal ‘pectinases’: from ribosome to plant cell wall. Trans. Br. mycol. Soc. 79: 1–14.Google Scholar
  8. Cooper, R.M., 1983. The mechanisms and significance of enzymic degradation of host cell walls by parasites. In: Callow, J.A. (Ed.), Biochemical plant pathology. John Wiley & Sons Ltd, New Yord, p. 101–135.Google Scholar
  9. Cooper, R.M., 1984. The role of cell wall-degrading enzymes in infection and damage. In: Wood, R.K.S. & Jellis, G.J. (Eds), Plant diseases: infection, damage and loss. Blackwell Sci. Publ., Oxford, London, Edinburgh, Boston, Palo Alto, Carlton, p. 13–27.Google Scholar
  10. Cruickshank, R.H., 1983. Distinction betweenSclerotinia species by their pectic zymograms. Trans. Br. mycol. Soc. 80: 117–119.Google Scholar
  11. Cruickshank, R.H. & Wade, G.C., 1980. Detection of pectic enzymes in pectin-acrylamide gels. Analyt. Biochem. 107: 177–181.CrossRefPubMedGoogle Scholar
  12. DiLenna, P. & Fielding A.H., 1983. Multiple forms of polygalacturonase in apple and carrot tissue infected by isolates ofBotrytis cinerea. J. gen. Microbiol. 129: 3015–3018.Google Scholar
  13. Dingle, J., Reid, W.W. & Solomons, G.L., 1953. The enzymic degradation of pectin and other polysaccharides. II. Application of the ‘cup-plate’ assay to the estimation of enzymes. J. Sci. Fd Agric. 4: 149–155.Google Scholar
  14. Harris, J.E. & Dennis, C., 1982. The influence of berries infected withBotrytis cinerea on the enzymic breakdown of sulphited strawberries. Ann. appl. Biol. 101: 109–117.CrossRefGoogle Scholar
  15. Heuvel, J. van den, 1981. Effect of inoculum composition on infection of French bean leaves by conidia ofBotrytis cinerea. Neth. J. Pl. Path. 87: 55–64.CrossRefGoogle Scholar
  16. Heuvel, J. van den & Waterreus, L.P., 1983. Conidial concentration as an important factor determining the type of prepenetration structures formed byBotrytis cinerea on leaves of French bean (Phaseolus vulgaris). Pl. Path. 32: 263–272.Google Scholar
  17. Mansfield, J.W. & Richardson, A., 1981. The ultrastructure of interactions betweenBotrytis species and broad bean leaves. Physiol. Pl. Path. 19: 41–48.Google Scholar
  18. Martinez, M.J., Reyes, F. & Lahoz, R., 1982. Cell wall plant polysaccharide-degrading enzymes in autolysis ofBotrytis cinerea. Trans. Br. mycol. Soc. 78: 395–403.CrossRefGoogle Scholar
  19. McKeen, W.E., 1974. Mode of penetration of epidermal cell walls ofVicia faba byBotrytis cinerea. Phytopathology 64: 461–467.CrossRefGoogle Scholar
  20. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. biol. Chem. 153: 375–380.Google Scholar
  21. Somogyi, M., 1952. Notes on sugar determination. J. biol. Chem. 195: 19–23.PubMedGoogle Scholar
  22. Szajer, I. & Bousquet, J.F., 1975. Production en culture d'endopolygalacturonase et de pectineméthylestérase par des champignons phytopathogènes: quelques aspects de l'influence de la source de carbone du milieu nutritif. Ann. Phytopath. 7: 299–307.Google Scholar
  23. Tani, T. & Nanba, H., 1969. Qualitative nature of macerating activities in the culture filtrates ofBotrytis cinerea. Ann. phytopath. Soc. Japan 35: 1–9.Google Scholar
  24. Verhoeff, K., 1980. The infection process and host-pathogen interactions. In: Coley-Smith, J.R., Verhoeff, K. & Jarvis, W.R. (Eds), The biology ofBotrytis. Academic Press, London, New York, Toronto, Sydney, San Francisco, p. 153–180.Google Scholar
  25. Verhoeff, K. & Warren, J.M., 1972. In vitro and in vivo production of cell wall degrading enzymes byBotrytis cinerea from tomato. Neth. J. Pl. Path. 78: 179–185.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1985

Authors and Affiliations

  • J. van den Heuvel
    • 1
  • L. P. Waterreus
    • 1
  1. 1.Willie Commelin Scholten Phytopathological LaboratoryBaarntheNetherlands

Personalised recommendations