Metabolic Brain Disease

, Volume 9, Issue 2, pp 171–181 | Cite as

Effect of 1,3-butanediol on cerebral energy metabolism. Comparison with β-hydroxybutyrate

  • Serge Gueldry
  • Jean Bralet
Original Contributions


Previous studies have shown that 1,3-butanediol (BD) has beneficial effects in experimental models of hypoxia or ischemia but the mechanism by which it exerts its protective effects remains unknown. BD is converted in the body to β-hydroxybutyrate (BHB) and it has been proposed that its effects were linked to its ketogenic effect. The effects of BD (25 and 50 mmol/kg) on cerebral energy metabolism of rats were studied by measuring the cerebral level of energy metabolites and by evaluating the cerebral metabolic rate according to the Lowry's method. BD induced an increase in [cortical glucose]/[plasma glucose] ratio which was associated with a decrease in lactate level and an increase in glucose and glycogen stores. In contrast, BHB treatment which mimicked hyperketonemia equivalent to BD did not modify cerebral glycolysis metabolites. Calculation of the energy reserve flux after decapitation showed that BD did not reduce the cerebral metabolic rate excluding a protective effect due to a depressant, barbiturate-like, action. These results suggest that BD induces a reduction of cerebral glycolytic rate. However, the effect is not linked to hyperketonemia but might be due to intracerebral conversion of BD to BHB.

Key words

1,3-Butanediol ketone bodies β-hydroxybutyrate cerebral energy metabolism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Combs, D.J., and D'Alecy, L.G. (1987). Motor performance in rats exposed to severe forebrain ischemia: effect of fasting and 1,3-butanediol.Stroke 18: 503–511.PubMedGoogle Scholar
  2. Dagnelie, P. (1975).Théorie et méthodes statistiques., Les presses agronomiques de Gembloux, Belgique.Google Scholar
  3. De Vivo, D.C., Leckie, M.P., Ferrendelli, J.S., and McDougal, D.B. (1978). Chronic ketosis and cerebral metabolism.Ann. Neurol. 3: 331–337.CrossRefPubMedGoogle Scholar
  4. Demerle-Pallardy, C., Duverger, D., Spinnewyn, B., Pirotzky, E., and Braquet, P. (1991). Peripheral type benzodiazepine binding sites following transient forebrain ischemia in the rat: effect of neuroprotective drugs.Brain Res. 565: 312–320.CrossRefPubMedGoogle Scholar
  5. Eiger, S.M., Kirsch, J.R., and D'Alecy, L.G. (1980). Hypoxic tolerance enhanced by β-hydroxybutyrate-glucagon in the mouse.Stroke 11: 513–517.PubMedGoogle Scholar
  6. Folbergrova, J., Lowry, O.H., and Passonneau, J.V. (1970). Changes in metabolites of the energy reserves in individual layers of mouse cerebral cortex and subjacent white matter during ischaemia and anesthesia.J. Neurochem. 17: 1155–1162.PubMedGoogle Scholar
  7. Folbergrova, J., Ponten, U., and Siesjö, B.K. (1972). Patterns of changes in brain carbohydrate metabolites, aminoacids and organic phosphates at increased carbon dioxide tensions.J. Neurochem. 22: 1115–1125.Google Scholar
  8. Frye, G.D., Chapin, R.E., Vogel, R.A., Mailman, R.B., Kilts, C.D., Mueller, R.A., and Breese, G.R. (1981). Effects of acute and chronic 1,3-butanediol treatment on central nervous system function: a comparison with ethanol.J. Pharmacol. Exp. Ther. 216: 306–314.PubMedGoogle Scholar
  9. Gjedde, A., and Crone, C. (1975). Induction processes in blood-brain transfer of ketone bodies during starvation.Am. J. Physiol. 229: 1165–1169.PubMedGoogle Scholar
  10. Gueldry, S., Marie, C., Rochette, L., and Bralet, J. (1990). Beneficial effect of 1,3-butanediol on cerebral energy metabolism and edema following brain embolization in rats.Stroke 21: 1458–1463.PubMedGoogle Scholar
  11. Gueldry, S., Marie, C., Christofi, G., Sarna, G.S., and Obrenovitch, T.P. (1994). Changes in extracellular and rat brain tissue concentrations of D-β-hydroxybutyrate after 1,3-butanediol treatment.J. Neurochem. 62: 223–226.PubMedGoogle Scholar
  12. Kirsch, J.R., and D'Alecy, L.G. (1979). Effect of altered availability of energy-yielding substrates upon survival from hypoxia in mice.Stroke 10: 288–291.PubMedGoogle Scholar
  13. Kirsch, J.R., D'Alecy, L.G., and Mongroo, P. (1980). Butanediol induced ketosis increases tolerance to hypoxia in the mouse.Stroke 11: 506–513.PubMedGoogle Scholar
  14. Kirsch, J.R., and D'Alecy, L.G. (1984). Hypoxia induced preferential ketone utilization by rat brain slices.Stroke 15: 319–323.PubMedGoogle Scholar
  15. Kogure, K., Busto, R., Scheinberg, P., and Reinmuth, O. (1975). Dynamics of cerebral metabolism during moderate hypercapnia.J. Neurochem. 24: 471–478.PubMedGoogle Scholar
  16. Kuschinsky, W., Suda, S., and Sokoloff, L. (1981). Local cerebral glucose utilization and blood flow during metabolic acidosis.Am. J. Physiol. 241: H 772-H 777.Google Scholar
  17. Levy, D.E., and Duffy, T.E. (1975). Effect of ischemia on energy metabolism in the gerbil cerebral cortex.J. Neurochem. 24: 1287–1289.PubMedGoogle Scholar
  18. Lowry, O.H., Passonneau, J.V., Hasselberger, F.X., and Schultz, D.W. (1964). Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain.J. Biol. Chem. 239: 18–30.PubMedGoogle Scholar
  19. Lowry, O.H., and Passonneau, J.V. (1972).A Flexible System of Enzymatic Analysis., Academic Press, New York.Google Scholar
  20. Lundgren, J., Smith, M.J., Mans, A.M., and Siesjö, B.K. (1992). Ischemic brain damage is not ameliorated by 1,3-butanediol in hyperglycemic rats.Stroke 23: 719–724.PubMedGoogle Scholar
  21. Lundy, E.F., Luyckx, A., Combs, D.J., Zelenock, G., and D'Alecy, L.G. (1984). Butanediol induced cerebral protection from ischemic-hypoxia in the instrumented Levine rat.Stroke 15: 547–552.PubMedGoogle Scholar
  22. Lundy, E.F., Dykstra, J., Luyckx, B., Zelenock, G.B., and D'Alecy L.G. (1985). Reduction of neurologic deficit by 1,3-butanediol induced ketosis in Levine rats.Stroke 16: 855–860.PubMedGoogle Scholar
  23. Lundy, E.F., Klima, L.D., Huber, T.S., Zelenock, G.B., and D'Alecy, LG (1987). Elevated blood ketone and glucagon levels cannot account for 1,3-butanediol induced cerebral protection in the Levine rat.Stroke 18: 217–222.PubMedGoogle Scholar
  24. Lust, W.D., Passonneau, J.V., and Crites, S.K. (1975). The measurement of glycogen in tissues by amylo-α-1,6-glucosidase after destruction of preexisting glucose.Analyt. Biochem. 68: 328–331.CrossRefPubMedGoogle Scholar
  25. MacMillan, V. (1988). Influence of ethanol on the energy metabolism of ischemic and postischemic brain.J. Cereb. Blood Flow Metab. 8: 335–340.PubMedGoogle Scholar
  26. Marie, C., Bralet, A.M., and Bralet J. (1987). Protective action of 1,3-butanediol in cerebral ischemia. A neurologic, histologic, and metabolic study.J Cereb. Blood Flow Metab. 7: 794–800.PubMedGoogle Scholar
  27. Marie, C., Bralet, A.M., Gueldry, S., and Bralet, J. (1990). Fasting prior to transient cerebral ischemia reduces delayed neuronal necrosis.Metab. Brain Dis. 5: 65–75.CrossRefPubMedGoogle Scholar
  28. Miller, A.L., Kiney, C.A., Corddry, D.H., and Staton, D.M. (1982). Interactions between glucose and ketone body use by developing brain.Dev. Brain Res. 4: 443–450.CrossRefGoogle Scholar
  29. Myles, W.S. (1976). Survival of fasted rats exposed to altitude.Can. J. Pharmacol. 54: 883–886.Google Scholar
  30. Nilsson, B., Norberg, K., Nordström, C.H., and Siesjö, B.K. (1975). Rate of energy utilization in the cerebral cortex of rats.Acta Physiol. Scand. 93: 569–571.PubMedGoogle Scholar
  31. Nordström, C.H., and Siesjö, B.K. (1978). Influence of phenobarbital on changes in the metabolites of the energy reserve of the cerebral cortex following complete ischemia.Acta Physiol. Scand. 104: 271–280.PubMedGoogle Scholar
  32. Pardridge, W.M. (1983). Brain metabolism: a perspective from the blood-brain barrier.Physiol. Rev. 63: 1481–1535.PubMedGoogle Scholar
  33. Pollay, M., and Stevens, F. (1980). Starvation-induced changes in transport of ketone bodies across the blood-brain barrier.J. Neurosci. Res. 5: 163–172.CrossRefPubMedGoogle Scholar
  34. Ponten, U., Ratcheson, R.A., Salford, L.G., and Siesjö, B.K. (1973). Optimal freezing conditions for cerebral metabolites in rats.J. Neurochem. 21: 1127–1138.PubMedGoogle Scholar
  35. Raskin, N.H., and Sokoloff, L. (1970). Alcohol dehydrogenase activity in rat brain and liver.J. Neurochem. 17: 1677–1687.PubMedGoogle Scholar
  36. Raskin, N.H., and Sokoloff, L. (1972). Enzymes catalysing ethanol metabolism in neural and somatic tissues of the rat.J. Neurochem. 19: 273–282.PubMedGoogle Scholar
  37. Ratcheson, R.A., Bilezikjian, L., and Ferrendelli, J.A. (1977). Effect of nitrous oxide anaesthesia upon energy metabolism.J. Neurochem. 28: 223–225.PubMedGoogle Scholar
  38. Robertson, C.S., Goodman, J.C., Narayan, R.K., Contant, C.F., and Grossman, R.G. (1991). The effect of glucose administration on carbohydrate metabolism after head injury.J. Neurosurg. 74: 43–50.PubMedGoogle Scholar
  39. Roucher, P., Corrèze, J.L., Méric, P., Seylaz, P., Mispelter, J., Tiffon, B., and Lhost, J.M. (1991). 1,3-Butanediol protects the brain's energy-producing capacity during reversible ischemia (abstract).J. Cereb. Blood Flow Metab. 11 (suppl 2) : S748.Google Scholar
  40. Ruderman, N.B., Ross, P.S., Berger, M., and Goodman, M.N. (1974). Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.Biochem. J. 138: 1–10.PubMedGoogle Scholar
  41. Shapiro, H.M. (1985). Barbiturates in brain ischemia.Brit. J. Anaesth. 57: 82–95.PubMedGoogle Scholar
  42. Siesjö, B.K., Folbergrova, J., and MacMillan, V. (1972). The effect of hypercapnia upon intracellular pH in the brain evaluated by the bicarbonate-carbonic acid method and the creatine phosphokinase equilibrium.J. Neurochem. 19: 2483–2495.PubMedGoogle Scholar
  43. Siesjö, BK (1981). Cell damage in the brain: a speculative synthesis.J. Cereb. Blood Flow Metab. 1: 155–185.PubMedGoogle Scholar
  44. Sokoloff, L. (1973). Metabolism of ketone bodies by the brain.Ann. Rev. Med. 24: 271–280.CrossRefPubMedGoogle Scholar
  45. Tate, R.L., Mehlman, M.A., and Tobin, R. (1971). Metabolic fate of 1,3-butanediol in the rat: conversion to β-hydroxybutyrate.J. Nutr. 101 : 1719–1726.PubMedGoogle Scholar
  46. Williamson, D.H., and Mellanby, J. (1974). D-(-)-3-hydroxybutyrate. In Bergmeyer, H.U. (ed.),Methods of enzymatic analysis, Academic Press, New York, pp. 1836–1839.Google Scholar
  47. Yager, J.Y., Brucklacher, R.M., and Vannucci, R.C. (1991). Effect of mild hypoglycemia on hypoxic-ischemic brain damage in the immature rat (abstract).J. Cereb. Blood Flow Metab. 11 (suppl 2) : S198.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Serge Gueldry
    • 1
  • Jean Bralet
    • 1
  1. 1.Laboratoire de Pharmacodynamie, Faculté de PharmacieDijon CedexFrance

Personalised recommendations