Advertisement

The Journal of Membrane Biology

, Volume 62, Issue 3, pp 231–237 | Cite as

Amino acid-dependent sodium transport in plasma membrane vesicles from rat liver

  • Herman J. Sips
  • Karel van Dam
Articles

Summary

Thel-alanine-dependent transport of sodium ions across the plasma membrane of rat-liver parenchymal cells was studied using isolated plasma membrane vesicles. Sodium uptake is stimulated specifically by thel-isomer of alanine and other amino acids, whose transport is sodium-dependent in rat-liver plasma membrane vesicles. Thel-alanine-dependent sodium flux across the membrane is inhibited by an excess of Li+ ions, but not by K+ or choline ions. Sodium transport is sensitive to-SH reagents and ionophores, and is an electrogenic process: a membrane potential (negative inside) can enhancel-alanine-dependent sodium accumulation. The data presented provide further evidence for a sodium-alanine cotransport mechanism.

Key words

Plasma membrane rat liver sodium transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crane, R.K. 1977. The gradient hypothesis and other models of carrier-mediated active transport.Rev. Physiol. Biochem. Pharmacol. 78:99–159PubMedGoogle Scholar
  2. 2.
    Edmondson, J.W., Lumeng, L., Li, T.-K. 1977. Direct measurement of active transport systems for alanine in freshly isolated rat liver cells.Biochem. Biophys. Res. Commun. 76:751–757PubMedGoogle Scholar
  3. 3.
    Fehlmann, M., Le Cam, A., Freychet, P. 1979. Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes.J. Biol. Chem. 254:10431–10437PubMedGoogle Scholar
  4. 4.
    Friedmann, N., Dambach, G. 1973. Effects of glucagon, 3′,5′-AMP and 3′,5′-AMP on ion fluxes and transmembrane potential in perfused livers of normal and adrenalectomized rats.Biochim. Biophys. Acta 307:399–403PubMedGoogle Scholar
  5. 5.
    Heinz, E. 1978. Mechanics and Energetics of Biological Transport. Springer-Verlag, BerlinGoogle Scholar
  6. 6.
    Hilden, S.A., Sacktor, B. 1979.d-glucose-dependent sodium transport in renal brush-border membrane vesicles.J. Biol. Chem. 254:7090–7096PubMedGoogle Scholar
  7. 7.
    Joseph, S.K., Bradford, N.M., McGivan, J.D. 1978. Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated rat-liver cells.Biochem. J. 176:827–836PubMedGoogle Scholar
  8. 8.
    Kelley, D.S., Skull, J.D., Potter, V.R. 1980. Hormonal regulation of amino acid transport and cAMP production in monolayer cultures of rat hepatocytes.J. Cell. Physiol. 103:159–168PubMedGoogle Scholar
  9. 9.
    Kessler, M., Acuto, O., Storelli, C., Murer, H., Müller, M., Semenza, G. 1978. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush-border membranes. Their use in investigating some properties ofd-glucose and choline transport systems.Biochim. Biophys. Acta 506:136–154PubMedGoogle Scholar
  10. 10.
    Kristensen, L.Ø. 1980. Energization of alanine transport in isolated rat hepatocytes. Electrogenic Na+-alanine co-transport leading to increased K+ permeability.J. Biol. Chem. 255:5236–5243PubMedGoogle Scholar
  11. 11.
    Le Cam, A., Freychet, P. 1976. Glucagon stimulates the A system for neutral amino acid transport in isolated hepatocytes of adult rats.Biochem. Biophys. Res. Commun. 72:893–901PubMedGoogle Scholar
  12. 12.
    Le Cam, A., Freychet, P. 1977. Neutral amino acid transport. Characterization of the A and L systems in isolated rat hepatocytes.J. Biol. Chem. 252:148–156PubMedGoogle Scholar
  13. 13.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurements with the Folin phenol reagentJ. Biol. Chem. 193:265–275PubMedGoogle Scholar
  14. 14.
    Murer, H., Kinne, R. 1980. The use of isolated membrane vesicles to study epithelial transport.J. Membrane Biol. 55:81–95Google Scholar
  15. 14.
    Peterson, G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable.Anal. Biochem. 83:346–356PubMedGoogle Scholar
  16. 16.
    Pressman, B.C. 1976. Biological applications of ionophores.Annu. Rev. Biochem. 45:501–530PubMedGoogle Scholar
  17. 17.
    Sachs, G., Jackson, R.J., Rabon, E.C. 1980. Use of plasma membrane vesicles.Am. J. Physiol 238:G151-G164PubMedGoogle Scholar
  18. 18.
    Sacktor, B. 1977. Transport in membrane vesicles isolated from the mammalian kidney and intestine.In: Current Topics in Bioenergetics. D.R. Sanadi, editor, pp. 39–81. Academic Press New YorkGoogle Scholar
  19. 19.
    Sips, H.J., Apitule, M.E.A., van Dam, K. 1980. Amino acid transport in plasma membrane vesicles from isolated rat-liver parenchymal cells.Biochim. Biophys. Acta 600:577–580PubMedGoogle Scholar
  20. 20.
    Sips, H.J., van Amelsvoort, J.M.M., van Dam, K. 1980. Amino acid transport in plasma-membrane vesicles from rat liver. Characterization of L-alanine transport.Eur. J. Biochem. 105:217–224PubMedGoogle Scholar
  21. 21.
    Srere, P.A. 1980. The infrastructure of the mitochondrial matrix.Trends Biochem. Sci. 5:120–121Google Scholar
  22. 22.
    Van Amelsvoort, J.M.M., Sips, H.J., van Dam, K. 1978. Sodium-dependent alanine transport in plasma-membrane vesicles from rat liver.Biochem. J. 174:1083–1086PubMedGoogle Scholar
  23. 23.
    Young, J.D. 1980. Effects of thiol-reactive agents on amino acid transport by sheep erythrocytes.Biochim. Biophys. Acta 602:661–672PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Herman J. Sips
    • 1
  • Karel van Dam
    • 1
  1. 1.Laboratory of Biochemistry, B.C.P. Jansen InstituteUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations