Skip to main content
Log in

On the chemical composition of atmospheric aerosols — Part I: Some stoichiometric aspects of the problem

  • Published:
Geofisica pura e applicata Aims and scope Submit manuscript

Summary

Following a recent hypothesis on the role of activated sodium chloride particles as possible condensation and sublimation nuclei, an analysis of data given byC. Junge on the chemical composition of aerosols, is made. It is established that all reported giant nuclei fall into three distinct categories of composition and that within each of these categories the ratio of the sums of anions to the sums of cations for constituents for which analyses were made, remains remarkably constant throughout the days of sampling, and for both geographic positions at which sampling has been carried out. A dependence of the hydroxide-carbonate content, on that of nitrate is also indicated in the «alkaline» nuclei. The system is treated as a saturated solution, and it is shown by the procedure of continuous variations that singularities occur at particular ratios of the prevalent chemical groups in solution, possibly indicating formation of complex species. This, together with the presence of double salts in the solid phase may be partly the reason for the constancy of ratio of sums in the groups of particles studied byJunge, while the grouping itself may depend on the origin and subsequent transformations of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Woodcock A. H.:Condensation nuclei and precipitation. J. Meteor., 7, 161 (1950).

    Google Scholar 

  2. Woodcock A. H.:Sea salt in a tropical storm. J. Meteor., 7, 397 (1950).

    Google Scholar 

  3. Woodcock A. H.:Atmospheric salt particles and raindrops. J. Meteor., 9, 200 (1952).

    Google Scholar 

  4. Woodcock A. H.:Salt nuclei in marine air as a function of altitude and wind force. J. Meteor., 10, 362 (1953).

    Google Scholar 

  5. Woodcock A. H.:Atmospheric salt in nuclei and raindrops. In «Artificial Stimulation of Rain», New York, Pergamon Press. pp. 202–206 (1957).

    Google Scholar 

  6. Turner J. S.:The salinity of rainfall as a function of drop size. Quart. J. Roy. Meteor. Soc., 81, 418 (1955).

    Google Scholar 

  7. Lodge J. P.:A study of sea salt particles over Puerto Rico. J. Meteor., 12, 493 (1955).

    Google Scholar 

  8. Woodcock A. H. &Blanchard D. C.:Tests of the salt nuclei hypothesis of rain formation. Tellus, 4, 437 (1955).

    Google Scholar 

  9. Blanchard D. C. &Woodcock A. H.:Bubble formation and modification in the sea and its meteorological significance. Tellus, 9, 145 (1957).

    Google Scholar 

  10. Blanchard D. C.:Electrically charged drops from bubbles in sea water and their meteorological significance. J. Meteor., 15, 383 (1958).

    Google Scholar 

  11. Schaefer V. J.:Silver and lead iodides as crystal nuclei. J. Meteor., 11, 417 (1954).

    Google Scholar 

  12. Turnbull D.:Artificial Stimulation of Rain. New York. Pergamon Press, 354 (1957).

    Google Scholar 

  13. Manson J. E.;Cagle F. W. Jr. &Eyring H.:The inactivation of growth promoting dislocations with temperature, pressure and poisons. Proc. Nat. Acad. Sci. USA., 44, 156 (1958).

    Google Scholar 

  14. Kleber W. &Weis J.:Keimbildung und Epitaxie von Eis. I. Z. Krist., 110, 30 (1958).

    Google Scholar 

  15. Lieser K. H.:Die Fehlordnung in Silberiodid. Trabajos III reunion int. reactividad solidos. 3° Madrid. 1956 I. C. Bermejo, pub. p. 493 (1957).

  16. Papée H. M.:On the preparation and sintering of cloud precipitating agents. Lead di-iodide microcrystals. Can. J. Chem., 36, 1443 (1958).

    Google Scholar 

  17. Papée H. M.:Microcalorimetry of adsorption of water vapor on lead di-iodide, Can. J. Chem., 37, 375 (1959).

    Google Scholar 

  18. Turnbull D. &Vonnegut B.:Nucleation Catalysis. Ind. and Eng. Chem., 44, 1292 (1952).

    Article  Google Scholar 

  19. Hibi T. &Ishikawa K.:Electron microscope observation of colored and bleached alkali halide crystals. J. Phys. Soc. Japan., 13, 709 (1958).

    Google Scholar 

  20. Seitz F.:Color centers in alkali halide crystals. Revs. Mod. Phys., 26, 7 (1954).

    Article  Google Scholar 

  21. Etzel H. W.:Detection of vacancies created by X-rays in NaCl, Phys. Rev., 100, 1643 (1955).

    Article  Google Scholar 

  22. Kobayashi A. &Kawaji S.:Adsorption and surface potential of semiconductors. Part 1:Photoenhanced adsorption of oxygen and change of contact potential of ZnS phosphors with illumination. J. Phys. Soc. Japan., 10, 270 (1955).

    Google Scholar 

  23. Low M. J. D. &Taylor H. Q.:Enhanced surface reactions. J. Electroch. Soc., 104, 439 (1957).

    Google Scholar 

  24. Low M. J. D.:Enhanced surface reactions. Part II.Oxygen adsorption on several metals. J. Electroch. Soc., 105, 103 (1958).

    Google Scholar 

  25. Papée H. M.:Activated salt surfaces in ice nucleation and growth, and the formation of droplets, J. Meteor. 16, 217–218 (1959).

    Google Scholar 

  26. Papée H. M.:Some effects of water vapor adsorption on sodium chlorides at 25°C. J. Meteor. 16, 244 (1959).

    Google Scholar 

  27. Papée H. M.:Microcalorimetry of adsorption of water vapor on sodium chloride which has been treated in electric discharges. J. Meteor. 16, 295 (1959).

    Google Scholar 

  28. Van Zeggeren F.; Schreiber H. P. & Benson G. C.:The purity of small sodium chloride particles prepared by electrostatic precipitation. Can J. Chem., 34, 1501.

  29. Junge C. E.:The chemical composition of atmospheric aerosols. I:Measurements at Round Hill field Station, June–July 1953. J. Meteor., 11, 323 (1954).

    Google Scholar 

  30. Junge C. E.:Recent investigation in air chemistry. Tellus, 8, 127 (1956).

    Google Scholar 

  31. Lenard P.:Ueber Wasserfall-elektrizität und über die Oberflächenbeschaffenheit der Flüssigkeiten. Ann. Phys., 47, 463 (1915).

    Google Scholar 

  32. Cauer H.:Ergebnisse Chemisch-Meteorologischer Forschung. Archiv für Meteorologie. B. 1, 221 (1949).

    Google Scholar 

  33. Cauer H.:Some problems of Atmospheric Chemistry. Compendium of Meteorology. Baltimore. Waverly Press Inc., p. 1126 (1951).

    Google Scholar 

  34. Twomey S.:The electrification of individual cloud droplets. Tellus, 8, 445 (1956).

    Google Scholar 

  35. Junge C. E.: Private communication (1958).

  36. Chauvenet E., Urbain G. & Job P.:Procés verbal de la séance du 11 juin, 1913. Soc. Chim. Phys. (1913).

  37. Job P.:Recherches sur la formation des complexes mineraux en solution, et sur leur stabilité. Ann. Chim., (10), 9, 113 (1928).

    Google Scholar 

  38. Woldbye F.:On the method of continuous variations. Acta Chem. Scand., 9, 299 (1955).

    Google Scholar 

  39. Van Dorp G. C. A.:Gleichgewicht im System: Schwefelsäure, Ammoniumsulfat und Wasser bei 30° C. Z. Physik. Chem., 73, 284 (1910).

    Google Scholar 

  40. d'Ans J.:Zur Kenntniss der Säuren Sulfate. VII. Z. Anorg. Chem., 80, 235 (1913).

    Article  Google Scholar 

  41. Seidell A.:Solubilities of inorganic and metal-organic compounds. New York. D. Van Nostrand Co. Inc., 1221–2 (1940).

    Google Scholar 

  42. Ingham J. W.:The apparent hydration of ions. I:The densities and viscosities of saturated solutions of sodium and potassium chlorides in hydrochloric acid. J. Chem. Soc. (London), 131, 1917 (1928).

    Google Scholar 

  43. Akerloff G. &Short O.:Solubility of sodium and potassium chlorides in corresponding hydroxide solutions at 25° C. J. Am. Chem. Soc., 59, 1912 (1937).

    Article  Google Scholar 

  44. Freeth F. A.:The system Na 2 O−CO 2 −NaCl−H 2 O, considered as a two four-component Systems. Phil. Trans. Roy. Soc. (London), A. 223, 35 (1922).

    Google Scholar 

  45. Kremann R. &Zitek A.:Die Bildung von Konversionsalpeter aus Natronsalpeter und Pottasche vom Standpunkt der Phasenlehre. Monatsch. Chem. 30, 311 (1909).

    Article  Google Scholar 

  46. Engel R.:Sur l'action qu'exercent les bases alcalines sur la solubilité des sels alcalins. Bull. Soc. Chim. (3), 6, 15 (1891).

    Google Scholar 

  47. Kurnakow N. S. &Kikolajew W. J.:Singuläre Falte des Natriumnitrats. Z. Phys. Ch., 130, 193 (1927).

    Google Scholar 

  48. Symposium of papers (1957):Interaction in ionic solutions. Discussion of the Faraday Soc., 24.

  49. Junge C. E.:The distribution of ammonia and nitrate in rainwater over the United States. Trans. Am. Geophys. Union., 39, 241 (1958).

    Google Scholar 

  50. Goetz P. F. W.:Ozone in the atmosphere. Compendium of Meteorology. Baltimore, Waverly Fress Inc., 275 (1951).

    Google Scholar 

  51. Craig R. A.:The observations and photochemistry of atmospheric ozone and their meteorological significance. Meteorological Monographs. Vol. I 1950.

  52. Junge C. E.:The concentration of chloride, sodium, potassium, calcium and sulfate in rain-water over the United States. J. Meteorol., 15, 417 (1958).

    Google Scholar 

  53. Rossby C. G. &Egnér H.:On the chemical climate and its variation with the atmospheric circulation pattern. Tellus, 7, 118 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papée, H.M. On the chemical composition of atmospheric aerosols — Part I: Some stoichiometric aspects of the problem. Geofisica Pura e Applicata 44, 191–203 (1959). https://doi.org/10.1007/BF01997647

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01997647

Keywords

Navigation