Helgoländer Meeresuntersuchungen

, Volume 39, Issue 1, pp 71–81 | Cite as

Behavioural responses of European silver eels(Anguilla anguilla) to the geomagnetic field

  • L. Karlsson


Magnetic orientation of European silver eels(Anguilla anguilla) was tested in an octagonal tank. Orientation was determined from photo-registrations of eel positions in tests performed alternately in the natural magnetic field and a field with the horizontal component rotated 180°. Tests were performed in LD 11 : 13. At a daytime light intensity of 100 lux the fish were diurnally active, while at 0.10 lux crepuscular or nocturnal activity dominated. The eels probably differed in preferred orientation, largely depending on the clockwise or anti-clockwise swimming of some of the animals. Therefore there was no preferred direction common to all eels. The orientation of single eels differed, however, significantly between the two magnetic fields, suggesting that the eels responded to the geomagnetic field.


Magnetic Field Waste Water Light Intensity Water Management Water Pollution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Batschelet, E., 1981. Circular statistics in biology. Acad. Press, London, 371 pp.Google Scholar
  2. Berge, J. A., 1979. The perception of weak electric A.C. currents by the European eel,Anguilla anguilla. — Comp. Biochem. Physiol.62A 915–919.CrossRefGoogle Scholar
  3. Bohun, S. & Winn, H. E., 1966. Locomotor activity of the American eel(Anguilla rostrata). — Chesapeake Sci.7 137–147.Google Scholar
  4. Branover, G. G., Vasiliev, A. S., Gleiser, S. I. & Tsinober, A. B., 1971. A study of the behaviour of eel in artificial and natural magnetic fields and the analysis of their mechanism of reception. (Russ.) — Vop. Ikhtiol.11 720–727.Google Scholar
  5. Bräutigaum, R., 1961a. Über Versuche zur Intensivierung des Blankaalfanges durch die Kombination von Lichtsperren und Großreusen und ihre grundsätzlichen Bedingungen. — Fisch.-Forschung4 19–25.Google Scholar
  6. Bräutigaum, R., 1961b. Anwendungsmöglichkeiten von Lichterketten zur Intensivierung des Blankaalfanges. — Z. Fisch.10 643–651.Google Scholar
  7. Edel, R. K., 1975. The effect of shelter availability on the activity of male silver eels. — Helgoländer wiss. Meeresunters.27 167–174.CrossRefGoogle Scholar
  8. Edel, R. K., 1976. Activity rhythms of maturing American eels(Anguilla rostrata). — Mar. Biol.36 283–289.CrossRefGoogle Scholar
  9. Edel, R. K., 1979. Locomotor activity of female silver eels(Anguilla rostrata) in response to shelter and unnatural photoperiods. — Rapp. P. v. Réun. Cons. int. Explor. Mer174 98–103.Google Scholar
  10. Enger, P. S., Kristensen, L. & Sand, O., 1976. The perception of weak electric D. C. currents by the European eel(Anguilla anguilla). — Comp. Biochem. Physiol.54A 101–103.Google Scholar
  11. Hanson, M., Karlsson, L. & Westerberg, H., 1984. Magnetic material in European eel(Anguilla anguilla L.). — Comp. Biochem. Physiol.77A 221–224.CrossRefGoogle Scholar
  12. Howland, H. C., 1973. Orientation of European robins to Kramer cages: Eliminating possible sources of error and bias in Kramer cage studies. — Z. Tierpsychol.33 295–312.PubMedGoogle Scholar
  13. Kirschwink, J. L. & Gould, J. L., 1981. Biogenic magnetite as a basis for magnetic field detection in animals. — Biosystems13 181–201.CrossRefPubMedGoogle Scholar
  14. Mardia, K. V., 1967. A non-parametric test for the bivariate two-sample location problem. — Jl R. stat. Soc. (Ser. B)29 320–342.Google Scholar
  15. McCleave, J. D., Rommel, S. A. & Cathcart, C. L., 1971. Weak electric and magnetic fields in fish orientation. — Ann. N. Y. Acad. Sci.188 270–282.PubMedGoogle Scholar
  16. Miles, S. G., 1968. Laboratory experiments on the orientation of the adult American eel,Anguilla rostrata. — J. Fish. Res. Bd Can.25 2143–2155.Google Scholar
  17. Rommel, S. A. & McCleave, J. D., 1973. Sensitivity of American eels(Anguilla rostrata) and Atlantic salmon(Salmo salar) to weak electric and magnetic fields. — J. Fish. Res. Bd Can.30 657–663.Google Scholar
  18. Sokal, R. R. & Rohlf, F. J., 1969. Biometry. Freeman, San Francisco, 776 pp.Google Scholar
  19. Tesch, F.-W., 1974.Influence of geomagnetism and salinity on the directional choice of eels. — Helgoländer wiss. Meeresunters.26 382–395.CrossRefGoogle Scholar
  20. Tesch, F.-W., 1977. The eel. Chapman & Hall, London, 434 pp.Google Scholar
  21. Tesch, F.-W., 1980. Migratory performance and environmental evidence of orientation. In: Environmental physiology of fishes. Ed. by M. A. Ali. Plenum Press, London, 589–612.Google Scholar
  22. Tesch, F.-W. & Lelek, A., 1973a. Directional behaviour of transplanted stationary and migratory forms of the eel,Anguilla anguilla, in a circular tank. — Neth. J. Sea Res.7 46–52.CrossRefGoogle Scholar
  23. Tesch, F.-W. & Lelek, A., 1973b. An evaluation of the directional choice in the eel, in captivity. — Arch. FischWiss.24 237–251.Google Scholar
  24. Vriens, A. M. & Bretschneider, F., 1979. The electrosensitivity of the lateral line of the European eel,Anguilla anguilla L. — J. Physiol., Paris75 341–342.Google Scholar
  25. Wallraff, H. G., 1973. Procedural problems in bird orientation studies with Kramer cages. — Z. Tierpsychol.33 313–318.PubMedGoogle Scholar
  26. Wiltschko, W. & Wiltschko, R., 1976. Die Bedeutung des Magnetkompasses für die Orientierung der Vögel. — J. Orn., Lpz.117 362–387.Google Scholar
  27. Zimmerman, M. A. & McCleave, J. D., 1975. Orientation of elvers of American eels(Anguilla rostrata) in weak magnetic and electric fields. — Helgoländer wiss. Meeresunters.27 175–189.CrossRefGoogle Scholar

Copyright information

© Biologische Anstalt Helgoland 1985

Authors and Affiliations

  • L. Karlsson
    • 1
  1. 1.Department of ZoophysiologyUppsala UniversityUppsalaSweden

Personalised recommendations