Advertisement

Journal of Insect Behavior

, Volume 7, Issue 5, pp 679–706 | Cite as

Mating behavior and thermoregulation of the reindeer warble fly,Hypoderma tarandi L. (Diptera: Oestridae)

  • J. R. Anderson
  • A. C. Nilssen
  • I. Folstad
Article

Abstract

Hypoderma (=Oedemagena) tarandi L. (Diptera: Oestridae) is characterized by a mating strategy in which both sexes meet and mate at two types of distinct topographical landmarks. In the expansive, treeless vidda (= tundra-like) biome, mating places are unique, rocky areas located along rivers and streams or in rocky areas of drying river and stream beds. In wooded valleys below the vidda, flies mated at certain topographical areas along dirt road tracks/paths. Thermoregulatory activities of males occupying perches at mating places included selection of substratum at perch site, orientation of body to sun's rays, crouching, stilting, and flights into upper cooler air. On warm sunny days males perched for just 1–2 min before flying up into cooler air to promote cooling. Laboratory and field studies revealed that flies could not metabolically cool down when held at 25–38°C. Time spent at mating places depended on temperature, duration of sunshine, and wind velocity. Males were very aggressive in pursuing allHypoderma-sized objects that passed by them or that landed near them, but they did not defend specific perch sites. Males either pursued and caught females in flight, or they hopped onto females that landed near them. During 5 years, 74 males and 14 females were seen at mating places. Dissection of six females caught at mating places revealed them to be recently eclosed flies full of fat body and with all eggs intact; two not paired with males were non-inseminated. Three experimentally paired females remainedin copulo for 10, 13, and 19.5 min.

Key words

Hypoderma tarandi reindeer warble fly mating behavior thermoregulatory behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcock, J. (1987). Leks and hilltopping in insects.J. Nat. Hist. 21 319–328.Google Scholar
  2. Anderson, J. R. (1974). Symposium on reproduction of arthropods of medical and veterinary importance. II. Meeting of the sexes.J. Med. Entomol. 11 7–19.PubMedGoogle Scholar
  3. Anderson, J. R., and Hoy, J. B. (1972). Relationships between host attack rates and CO2-baited insect flight trap catches of certainSymphoromyia species.J. Med. Entomol. 9 373–393.PubMedGoogle Scholar
  4. Anderson, J. R., and Nilssen, A. (1986). Mating and host-seeking activity of reindeer bot flies. 1st Int. Congr. Dipterol. Abstr. Vol., p. 9.Google Scholar
  5. Anderson, J. R., Nilssen, A. C., and Folstad, I. (1988). Aggregation and mating behavior of the reindeer warble fly,Hypoderma tarandi L. Proc. XVIII Intl. Congr. Entomol., Vancouver, B.C., Canada, abstr. VS8, p. 171.Google Scholar
  6. Beehler, B. M., and Foster, M. S. (1988). Hotspots, hotshots, and female preference in the organization of lek mating systems.Am. Nat. 131 203–219.CrossRefGoogle Scholar
  7. Bergman, A. M. (1917). On the Oestridae of reindeer (in Swedish; English transl.).Entomol. Tidskrift 38(1): 1–32;38(2): 113–146.Google Scholar
  8. Boertje, R. D. (1985). Seasonal activity of the Denali caribou herd, Alaska.Rangifer 5 32–42.Google Scholar
  9. Boulard, C., and Thornberry, H. (1984).Warble Fly Control in Europe, A. A. Balkema, Rotterdam/Boston.Google Scholar
  10. Bradbury, J. W. (1985). Contrasts between insects and vertebrates in the evolution of male display, female choice, and lek mating.F. Zool. 31 273–289.Google Scholar
  11. Bradbury, J. W., and Gibson, R. (1983). Leks and mate choice. In Bateson, P. (ed.),Mate Choice, Cambridge University Press, Cambridge, pp. 109–138.Google Scholar
  12. Bradbury, J. W., Gibson, R., and Tsai, I. M. (1986). Hotspots and the dispersion of leks.Anim. Behav. 34 1694–1709.Google Scholar
  13. Breyev, K. A., and Karazeeva, Z. F. (1954). Materials relating to the biology of the warble-flyOedemagena tarandi L. 2. Observations on larvae of the second and third instars.Rev. Appl. Entomol. 42 181–182.Google Scholar
  14. Casey, T. M. (1981). Behavioral mechanisms of thermoregulation. In Heinrich, B. (ed.),Insect Thermoregulation, John Wiley & Sons, New York, pp. 79–114.Google Scholar
  15. Catts, E. P., Garcia, R., and Poorbaugh, J. H. (1965). Aggregation sites of males of the common cattle grub,Hypoderma lineatum (DeVillers) (Diptera: Oestridae).J. Med. Entomol. 1 357–358.PubMedGoogle Scholar
  16. Chamberlain, W. F., Barrett, C. C., and Miller, J. A. (1986). Effect of gamma irradiation on flight time ofHypoderma lineatum (Diptera: Oestridae) males.Ann. Entomol. Soc. Am. 79 289–292.Google Scholar
  17. Digby, P. S. B. (1955). Factors affecting the temperature excess of insects in sunshine.J. Exp. Biol. 32 279–298.Google Scholar
  18. Downes, C. M., Smith, S. M., Theberge, J. B., and Dewar, H. J. (1985). Hilltop aggregation sites and behavior of maleCephenemyia trompe (Diptera: Oestridae).Can. Entomol. 117 321–326.CrossRefGoogle Scholar
  19. Downes, J. A. (1962). What is an arctic insect?Can. Entomol. 94 143–162.CrossRefGoogle Scholar
  20. Downes, J. A. (1965). Adaptations of insects in the Arctic.Annu. Rev. Entomol. 10 257–274.CrossRefGoogle Scholar
  21. Drummond, R. O., Lambert, G., Smalley, H. E., Jr., and Terrill, C. E. (1981). Estimated losses of livestock to pests. In Pimentel, D. (ed.),CRC Handbook of Pest Management in Agriculture, CRC Press, Boca Raton, FL.Google Scholar
  22. Drummond, R. O., George, J. E., and Kunz, S. E. (1988).Control of Arthropod Pests of Livestock: A Review of Technology, CRC Press, Boca Raton, FL.Google Scholar
  23. Erne, K., and Nordkvist, M. (1970). The disappearance rate in reindeer of Famphur and organophosphorus parasiticide.Acta Vet. Scand. 11 209–218.PubMedGoogle Scholar
  24. Folstad, I. (1986). Hudbrems hos rein. In Parasitter hos rein.Ottar, Tidsskrift for nordnorsk natur og kuttur 4(86), pp. 38–44.Google Scholar
  25. Folstad, I., Nilssen, A. C., Halvorsen, O., and Andersen, J. (1991). Parasite avoidance: The cause of post-calving migration in Rangifer?Can. J. Zool. 69 2423–2429.CrossRefGoogle Scholar
  26. Gansser, A. (1951).Dasselfliegen. Biologie, Schäden und Bekämpfung von Oestriden mit besonderes Berücksichtigung Schweizerischer Verhältnisse. Häutes-chädenkomm, Zürich.Google Scholar
  27. Gansser, A. (1957). Zur Biologie der Dasselfliege und zur Bekämpfung der Dasselplage durch Abfangen der Dasselfliegen. Schwiez.Arch. Tierheilk. 99 17–27.Google Scholar
  28. Gilbert, F. S. (1984). Thermoregulation and the structure of swarms inSyrphus ribessi (Syrphidae).Oikos 42 249–255.Google Scholar
  29. Hadwen, S. (1926). Notes on the life history ofOedemagena tarandi L. andCephenemyia (trompe) nasalis L.J. Parasitol. 13 56–65.Google Scholar
  30. Hamilton, W. J. (1973).Life's Color Code, McGraw-Hill, New York.Google Scholar
  31. Heinrick, B. (1974). Thermoregulation in endothermic insects.Science 185 747–756.PubMedGoogle Scholar
  32. Heinrick, B. (ed.) (1981).Insect Thermoregulation, John Wiley & Sons, New York.Google Scholar
  33. Heinrich, B., and Pantle, C. (1975). Thermoregulation in small flies (Syrphus sp.): Basking and shivering.J. Exp. Biol. 62 599–610.Google Scholar
  34. Kelsall, J. P. (1968). The migratory barren ground caribou in Canada. Canadian Wildlife Service Monograph No. 3, Queen's Printer, Ottawa.Google Scholar
  35. Kevin, P. G., and Shorthouse, J. D. (1970). Behavioral thermoregulation by high arctic butterflies.Arctic 23 268–279.Google Scholar
  36. Klein, K. K., and Jetter, F. P. (1987). Economic benefits from the Alberta warble control program.Can. J. Agr. Econ. 35 289–304.CrossRefGoogle Scholar
  37. May, M. M. (1979). Insect thermoregulation.Annu. Rev. Entomol. 24 313–349.CrossRefGoogle Scholar
  38. Natvig, L. R. (1916). Beitrag zur Biologie der Dasselfliegen des Renntieres.Tromsø Museum Aarshefter. 38/39 117–133.Google Scholar
  39. Nordkvist, M. (1967). Treatment experiments with systemic insecticides against the larvae of the reindeer grub fly (Oedemagina tarandi L.) and the reindeer nostril fly (Cephenemyia trompe L.).Nord. Vet. Med. 19 281–293.Google Scholar
  40. Paine, R. (1988). Reindeer and caribouRangifer tarandus in the wild and under pastoralism.Polar Record 24 31–42.CrossRefGoogle Scholar
  41. Peterman, R. M. (1973). Possible behavioral thermoregulation inTanarthrus salinus andT. inyo.Pan-Pac. Entomol. 49 69–73.Google Scholar
  42. Quellar, D. C. (1987). The evolution of leks through female choice.Anim. Behav. 35 1424–1432.Google Scholar
  43. Schultz, T. D., and Hadley, N. F. (1987). Structural colors of tiger beetles and their role in heat transfer through the integument.Physiol. Zool. 60 737–745.Google Scholar
  44. Thornhill, R., and Alcock, J. (1983).The Evolution of Insect Mating Systems, Harvard University Press, Cambridge, MA.Google Scholar
  45. Toft, C. A. (1989). Population structure and mating system of a desert bee fly (Lordotus pulchrissimus; Diptera: Bombyliidae). I. Male demography and interactions.Oikos 54 345–358.Google Scholar
  46. Washburn, R. H., Klebesadel, L. J., Palmer, J. S., Luick, J. R., and Bleicher, D. P. (1980). The warble-fly problem in Alaska reindeer.Agroborealis Jan: 23–28.Google Scholar
  47. Weintraub, J. (1961). Inducing mating and oviposition of the warble fliesHypoderma bovis (L.) andH. lineatum (DeVill.) (Diptera: Oestridae) in captivity.Can. Entomol. 93 149–156.Google Scholar
  48. Wheeler, C. H. (1989). Mobilization and transport of fuels to the flight muscles. In Goldsworthy, G. J., and Wheeler, C. H. (eds),Insect Flight, Boca Raton, FL, pp. 273–304.Google Scholar
  49. Williams, R. E., Hall, R. D., Broce, A. B., and Scholl, P. J. (1985).Livestock Entomology, John Wiley & Sons, New York.Google Scholar
  50. Zhigunov, P. S. (ed.) (1968).Reindeer Husbandry, 2nd ed. (translated from Russian), Israel Program for Scientific Translations, Jerusalem.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • J. R. Anderson
    • 1
  • A. C. Nilssen
    • 2
  • I. Folstad
    • 3
  1. 1.Department of Entomological SciencesUniversity of CaliforniaBerkeley
  2. 2.Zoology Department, Tromsø MuseumUniversity of TromsøNorway
  3. 3.Department of EcologyUniversity of TromsøTromsøNorway

Personalised recommendations