Journal of thermal analysis

, Volume 49, Issue 2, pp 801–808 | Cite as

Red cell thermodynamics

A materials perspective
  • R. J. Williams
Biological/Life Sciences


A cohort of human red cells of the same age persists in the circulation for about 110 days without access to repair but disappears over the next 10 days. Hyperosmotic stress accelerates the process exponentially. The kinetics are Avrami in all cases we have examined, withn=2. We have previously modelled this as a stress failure in a viscoelastic cytoskeleton, but because of the two dimensional long range order in the cytoskeleton, the data can also be interpreted as a state change in a crystalline material.


Avrami exponent erythrocyte hemolysis osmotic lysis osmotic stress red cells spectrin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Yan, E. Winograd, A. Viel, T. Cronin, S. C. Harrison and D. Branton, Science, 262 (1993) 2027.CrossRefGoogle Scholar
  2. 2.
    J. E. Gordon, The New Science of Strong Materials, Penguin, London, 1968.Google Scholar
  3. 3.
    J. E. Gordon, Structures, Penguin, London 1978.Google Scholar
  4. 4.
    D. W. Thompson, Growth and Form, The University Press, Cambridge 1942.Google Scholar
  5. 5.
    D. M. Surgenor, The Red Blood Cell, Second Edition; Academic Press, New York 1974.Google Scholar
  6. 6.
    M. M. Wintrobe et al., Eds, Clinical Hematology, 8th Edition; Lea and Fabiger, Philadelphia, 1981.Google Scholar
  7. 7.
    D. R. Markle, E. A. Evans and R. M. Hockmuth, Biophys. J., 42 (1983) 91.CrossRefGoogle Scholar
  8. 8.
    J. Palek and K. E. Sahr, Blood, 80 (1992) 308.Google Scholar
  9. 9.
    R. J. Williams, A. G. Hirsh, H. T. Meryman and T. A. Takahashi, J. Thermal Anal., 40 (1993) 857.CrossRefGoogle Scholar
  10. 10.
    R. J. Williams and A. Hirsh, Proc. 23rd NATAS Conference, 23 (1994) 270.Google Scholar
  11. 11.
    S. A. Landaw and H. S. Winchell, Blood, 36 (1970) 642.Google Scholar
  12. 12.
    R. P. Rand, Federation Proc., 26 (1967) 1780.Google Scholar
  13. 13.
    M. J. Conrad and S. J. Singer, Proc. Nat. Acad. Sci. USA, 76 (1979) 5202.CrossRefGoogle Scholar
  14. 14.
    R. J. Williams and T. Takahashi, Comp. Biochem. Physiol., 74A (1982) 621.CrossRefGoogle Scholar
  15. 15.
    T. L. Steck, R. S. Weinstein, J. H. Straus and D. F. H. Wallach, Science 168 (1970) 255.CrossRefGoogle Scholar
  16. 16.
    H. T. Meryman, unpublished data.Google Scholar
  17. 17.
    J. Connor, C. H. Pak, R. F. A. Zwaal and A. J. Schreit, Jour. Biol. Chem., 267 (1992) 19412.Google Scholar
  18. 18.
    J. M. Tyler, B. N. Reinhardt and D. Branton, J. Biol.Chem., 255 (1980) 7034.Google Scholar
  19. 19.
    M. J. Saxton, Biophys. J., 57 (1990) 1167.CrossRefGoogle Scholar
  20. 20.
    R. M. Hockmuth and R. E. Waugh, Ann. Rev. Physiol., 49 (1987) 209.CrossRefGoogle Scholar
  21. 21.
    H. W. Starkweather, Macromolecules, 23 (1990) 328.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • R. J. Williams
    • 1
  1. 1.Naval Medical Research InstituteTransplantation and Cryobiology Research ProgramBethesdaUSA

Personalised recommendations