Journal of thermal analysis

, Volume 49, Issue 2, pp 785–794 | Cite as

A modified continuous flow microcalorimeter for measuring heat dissipation by mammalian cells in batch culture

  • Y. Guan
  • P. C. Lloyd
  • P. M. Evans
  • R. B. Kemp
Biological/Life Sciences


Microcalorimeters to monitor the heat dissipation of bench-scale animal cell cultures on line and in real time require a continuous circuit between the vessel measuring heat flow rate and the bioreactor. The modifications to the transmission lines and calorimetric heat exchanger were to: (i) reverse the usual upward direction of the cell suspension in the flow vessel to downwards; (ii) install an in situ washing/cleaning facility; (iii) use low diffusivity PEEK material; and (iv) maintain thermal equilibration by water-jacketing the transmission tubing. Chemical calibration showed that there was more than a 20% difference between the physical volume and the effective thermal volume. An appropriate thermodynamic system was defined in order to permit enthalpy balance studies.


animal cell heat dissipation heat flux metabolic activity microcalorimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. von Stockar and I. W. Marison, Thermochim. Acta, 193 (1991) 215.CrossRefGoogle Scholar
  2. 2.
    L. Gustafsson, Thermochim. Acta, 193 (1991) 145.CrossRefGoogle Scholar
  3. 3.
    P. M. Hayter, E. M. A. Curling, A. J. Baines, N. Jenkins, I. Salmon, P. G. Strange and A. T. Bull, Appl. Microbiol. Biotechnol., 34 (1991) 559.CrossRefGoogle Scholar
  4. 4.
    R. B. Kemp in A. E. Beezer (Ed.), Biological MicrocaIorimetry, Academic Press, London 1980, p. 113.Google Scholar
  5. 5.
    R. B. Kemp in A. M. James (Ed.), Thermal and Energetic Studies of Cellular Biological Systems, Wright, Bristol 1987, p. 147.Google Scholar
  6. 6.
    S. Pauly, in J. Brandrup and E. H. Immergut (Eds.), Polymer Handbook, Wiley, London 1989, p. 435.Google Scholar
  7. 7.
    R. B. Kemp, Methods Mol. Biol., 43 (1995) 211.Google Scholar
  8. 8.
    J. Suurkuusk and I. Wadsö, Chem. Scripta., 20 (1982) 155.Google Scholar
  9. 9.
    C. Larsson, A. Blomberg and L. Gustafsson, Biotechnol. Bioeng., 38 (1991) 447.CrossRefGoogle Scholar
  10. 10.
    A. Schön and I. Wadsö, J. Biochem. Biophys. Methods, 13 (1986) 135.CrossRefGoogle Scholar
  11. 11.
    I. Wadsö, in K. N. Marsh and P. A. G. O'Hare (Eds.), Solution Calorimetry, Blackwell Scientific Publications, Oxford 1994, p. 267.Google Scholar
  12. 12.
    I. Wadsö, Thermochim. Acta, 219 (1993) 1.CrossRefGoogle Scholar
  13. 13.
    A. Chen and I. Wadsö, J. Biochem. Biophys. Methods, 6 (1982) 297.CrossRefGoogle Scholar
  14. 14.
    E. Gnaiger and R. B. Kemp, Biochim. Biophy. Acta, 1016 (1990) 328.CrossRefGoogle Scholar
  15. 15.
    U. von Stockar, L. Gustafsson, K. Larsson, I. Marison, P. Tissot and E. Gnaiger, Biochim. Biophys. Acta, 1183 (1993) 221.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • Y. Guan
    • 1
  • P. C. Lloyd
    • 1
  • P. M. Evans
    • 1
  • R. B. Kemp
    • 1
  1. 1.Institute of Biological SciencesThe University of WalesAberystwythUK

Personalised recommendations