Advertisement

Geofisica pura e applicata

, Volume 52, Issue 1, pp 104–114 | Cite as

A relation between hydraulic fracture pressures and tectonic stresses

  • N. Morgenstern
Article

Summary

It is shown that hydraulic fracture pressures are related to the stresses in the formation and the strength of the rock composing it. Using the Coulomb-Mohr failure criterion and the principle of effective stress, expressions can be obtained relating these factors. The theory indicates that in areas characterized by thrust faulting, the fractures will be inclined horizontally whereas in areas subject to normal faulting stress conditions, they will be more vertical. The analysis of some field data gives reasonable results.

Keywords

Stress Condition Field Data Effective Stress Failure Criterion Hydraulic Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson E. M. (1951):The Dynamics of Faulting. Oliver & Boyd, Edinburgh.Google Scholar
  2. Bishop A. W. (1959):The Principle of Effective Stress. Teknisk Ukeblad, 39, 859–863.Google Scholar
  3. Böker R. (1915):Die Mechanik der bleibenden Formänderungen in kristallinisch aufgebauten Körpern. Ver. D. Ing. Mitt. Forschung, 175, 1–51.Google Scholar
  4. Cornforth D. C. (1961):Plane Strain Failure Characteristics of a Saturated Sand. Ph. D. Thesis, University of London.Google Scholar
  5. Handin J., Higgs D. V. & O'Brien J. K. (1960):Torsion of Yule Marble under Confining Pressure. Geol. Soc. America, Memoir 79 on Rock Deformation, 245–274.Google Scholar
  6. Heard H. C. (1960):Transition from Brittle to Ductile Flow in Solenhofen Limestone as a Function of Temperature, Confining Pressure and Interstitial Fluid Pressure. Geol. Soc. America, Memoir 79 on Rock Deformation, 193–226.Google Scholar
  7. Fraser C. D. &Pettitt B. E. (1962):Results of a Field Test to Determine the Type and Orientation of a Hydraulically Induced Formation Fracture. Journal of Petroleum Technology, 14, 5, 463–466.Google Scholar
  8. Godbey J. K. &Hodges H. D. (1958):Pressure Measurements during Formation Fracturing Operations, Trans. A.I.M.E., 213, 65–69.Google Scholar
  9. Hubbert M. K. &Willis D. G. (1957):Mechanics of Hydraulic Fracturing. Trans. A.I.M.E., 210, 153–168.Google Scholar
  10. vonKarman T. (1911):Festigkeitsversuche unter allseitigen Druck. Z.V.D.I., 55, 1749–1757.Google Scholar
  11. vanPoollen H. K. (1957):Theories of Hydraulic Fracturing. Quarterly of the Colorado school of Mines, 52, 3, 114–127.Google Scholar
  12. Riley F. S. (1961):Liquid-level Tiltmetre Measures Uplift Produced by Hydraulic Fracturing. U. S. Geol. Survey, Prof. Paper 424-B, 317–319.Google Scholar
  13. Robinson L. H. (1959):The Mechanics of Rock Failure. Quarterly of the Colorado School of Mines, 54, 3, 177–199.Google Scholar
  14. Scheidegger A. E. (1960):On the Connection between Tectonic Stresses and Well Fracturing Data. Geofisica Pura e Applicata, 46, 2, 66–76.Google Scholar
  15. Skempton A. W. (1960):Effective Stress in Soils, Concrete and Rocks. Proc. Conf. on Pore Pressure and Suction in Soils, 4–16, Butterworths, London.Google Scholar
  16. Torre C. (1947):Einflus der mittleren der Hauptnormalspannung auf die Fliess- und Bruchgrenze. O. Ing.-Archiv., 1, 4–5, 316–342.Google Scholar
  17. Westergaard H. M. (1940):Plastic State of Stress around a Deep Well. J. Boston Society of Civil Engineers, 27, 1.Google Scholar

Copyright information

© Istituto Geofisico Italiano 1962

Authors and Affiliations

  • N. Morgenstern
    • 1
  1. 1.Imperial College of Science and TechnologyLondonEngland

Personalised recommendations