Skip to main content
Log in

Intracellular free zinc and zinc buffering in human red blood cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Zn2+ has been allowed to equilibrate across the red cell membrane using two agents that increase membrane permeability to this ion: the ionophore A23187 and the specific carrier ethylmaltol. Extracellular free Zn2+ was controlled with EGTA (1,2-di(2-aminoethoxy)ethane-NNN′N′tetra-acetic acid)) buffers, except in the case of ethylmaltol, which itself acts as a buffer. Measurement of cellular zinc content at different levels of free Zn2+ facilitated the study of intracellular Zn2+ binding. It was also possible to estimate intracellular free Zn2+ concentration in untreated cells using a “null-point” technique. Intracellular zinc was found to consist of an inexchangeable component of about 129 μmol/1013 cells and an exchangeable component of 6.7±1.5 μmol/1013 cells, with a free concentration of about 2.4×10−11 m. The main component of Zn2+ buffering is hemoglobin, with a dissociation constant of about 2×10−8 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bettger, W.J., Taylor, C.G. 1986. Effects of copper and zinc status of rats on the concentration of copper and zinc in the erythrocyte membrane.Nutr. Res. 6:451–457

    Google Scholar 

  • Ferreira, H.G., Lew, V.L. 1976. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca.Nature 259:47–49

    Article  PubMed  Google Scholar 

  • Flatman, P.W., Lew, V.L. 1980. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.J. Physiol. 305:13–30

    PubMed  Google Scholar 

  • Foote, J.W., Delves, H.T. 1984. Albumin bound and α2-macroglubolin bound zinc concentrations in the sera of healthy adults.J. Clin. Pathol. 37:1050–1054

    PubMed  Google Scholar 

  • Galdes, A., Vallee, B.L. 1983. Categories of zinc metalloenzymes.In: Metal Ions in Biological Systems. H. Sigel, editor.15:1–54, Marcel Dekker, New York

    Google Scholar 

  • Gilman, J.G., Brewer, G.J. 1978. The oxygen-linked zinc-binding site of human haemoglobin.Biochem. J. 169:625–632

    PubMed  Google Scholar 

  • Giroux, E.L., Henkin, R.I. 1972. Competition for zinc among serum albumin and amino acids.Biochim. Biophys. Acta 273:64–72

    PubMed  Google Scholar 

  • Grider, A., Bailey, L.B., Cousins, R.J. 1990. Erythrocyte metallothionein as an index of zinc status in humans.Proc. Natl. Acad. Sci. USA 87:1259–1262

    PubMed  Google Scholar 

  • Harris, W.R., Keen, C. 1989. Calculations of the distribution of zinc in a computer model of human serum.J. Nutr. 119:1677–1682

    PubMed  Google Scholar 

  • Hider, R.C., Ejim, L., Taylor, P.D., Gale, R., Huehms, E., Porter, J. 1990. Facilitated uptake of zinc into human erythrocytes. Relevance to the treatment of sickle-cell anaemia.Biochem. Pharmacol. 39:1005–1012

    Article  PubMed  Google Scholar 

  • Kalfakakou, V., Simons, T.J.B. 1990. Anionic mechanisms of zinc uptake across the human red cell membrane.J. Physiol. 421:485–497

    PubMed  Google Scholar 

  • Magneson, G.R., Puvathingal, J.M., Ray, W.J. 1987. The concentrations of free Mg2+ and free Zn2+ in equine blood plasma.J. Biol. Chem. 262:11140–11148

    PubMed  Google Scholar 

  • Martell, A.E., Smith, R.M. 1974. Critical Stability Constants: Amino Acids. Vol. 1. Plenum, New York

    Google Scholar 

  • Martell, A.E., Smith, R.M. 1982. Critical Stability Constants: First Supplement. Vol. 5. Plenum, New York

    Google Scholar 

  • Ohno, H., Doi, R., Yamamura, K., Yamashita, K., Iizuka, S., Taniguchi, N. 1985. A study of zinc distribution in erythrocytes of normal humans.Blut 50:113–116

    Article  PubMed  Google Scholar 

  • Peck, E.J., Ray, W.J. 1971. Metal complexes of phosphoglucomutase in vivo. Alterations induced by insulin.J. Biol. Chem. 246:1160–1167

    PubMed  Google Scholar 

  • Pfeiffer, D.R., Lardy, H.A. 1976. Ionophore A23187: The effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187.Biochemistry 15:935–943

    Article  PubMed  Google Scholar 

  • Rifkind, J.M., Heim, J.M. 1977. Interaction of zinc with hemoglobin: Binding of zinc and the oxygen affinity.Biochemistry 16:4438–4443

    Article  PubMed  Google Scholar 

  • Scarpa, A., Brinley, F.J., Dubyak, G. 1978. Antipyrylazo III, a “middle range” Ca2+ metallochromic indicator.Biochemistry 17:1378–1386

    Article  PubMed  Google Scholar 

  • Simons, T.J.B. 1987. Optical probes for Zn2+ ions.J. Physiol. 394:6P

    Google Scholar 

  • Simons, T.J.B. 1990. An approach to the estimation of free zinc in human red blood cells.J. Physiol. 423:47P

    Google Scholar 

  • Smith, R.M., Martell, A.E. 1989. Critical Stability Constants: Second Supplement. Vol. 6. Plenum, New York

    Google Scholar 

  • Tupper, R., Watts, R.W.E., Wormall, A. 1952. Some observations on the zinc in carbonic anhydrase.Biochem. J. 50:429–432

    Google Scholar 

  • Van Wouwe, J.P., Veldhuizen, M., DeGoeji, J.J.M., Van den Hamer, C.J.A. 1990. In vitro exchangeable erythrocytic zinc.Biol. Trace Element Res. 25:57–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, T.J.B. Intracellular free zinc and zinc buffering in human red blood cells. J. Membrain Biol. 123, 63–71 (1991). https://doi.org/10.1007/BF01993964

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01993964

Key Words

Navigation