Geofisica pura e applicata

, Volume 56, Issue 1, pp 185–193 | Cite as

On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere

  • N. A. Fuchs


By the «limiting sphere» method the combination coefficients for gaseous ions and aerosol particles were calculated, allowing for the jump in ion concentration at the surface of the particles. Hence the stationary charge distribution on aerosol particles in a symmetrical bipolar ionic atmosphere was determined. The use of the Boltzmann equation for this purpose proposed by some authors is theoretically wrong asthis equation applies to equilibrium rather than to stationary states. In practice, the Boltzmann equation can be used for particles with radius ≥3·10−5 cm (under atmospheric pressure). Within this range the image forces and the jump in ion concentration may be neglected. The conditions of the applicability of the steady diffusion equations to the theory of the stationary charge distribution in aerosols are discussed.


Atmosphere Stationary State Stationary Charge Boltzmann Equation Diffusion Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Keefe D., Nolan P. J. &Rich T. A.:Charge equilibrium in aerosols according to the Boltzmann law. Proc. Roy. Irish Acad., 60-A, 27 (1959).Google Scholar
  2. (2).
    Lissowski P.:Das Laden von Aerosolteilchen in einer bipolaren Ionenatmosphäre. Acta Physicochimica URSS, 13, 157 (1940).Google Scholar
  3. (3).
    Fuchs N. A.:The charges on the particles of aerocolloids. Isvestiya Acad. Nauk USSR, ser. geogr. geophys., 11, 341 (1947).Google Scholar
  4. (4).
    Pluvinage P.:Étude théorique et expérimentale de la conductibilité dans les nuages non orageux. Annales de Géophys., 2, 31 (1946).Google Scholar
  5. (5).
    Bricard J.:L'équilibre ionique de la basse atmosphère. J. Geophys. Res., 54, 39 (1949).Google Scholar
  6. (6).
    Gunn R.:Diffusion charging of atmospheric droplets by ions and the resulting combination coefficients. J. Meteor., 11, 339 (1954).Google Scholar
  7. (7).
    Fuchs N. A.:Evaporation and droplet growth in gaseous media. §5, Pergamon Press (1959).Google Scholar
  8. (8).
    Fuchs N. A. &Stechkina I. B.:Resistance of a gaseous medium to the motion of spherical particles of a size comparable to the mean free path of the gas molecules. Trans. Farad. Soc. 58, 1949 (1962).CrossRefGoogle Scholar
  9. (9).
    Wright P. G.:On the discontinuity involved in diffusion across an interface. Faraday Discuss., 30, 100 (1960).CrossRefGoogle Scholar
  10. (10).
    Natanson G. L.:On the theory of charging of amicroscopic aerosol particles resulting from the capture of gaseous ions. J. Techn. Physics (Russian), 30, 573 (1960).Google Scholar
  11. (11).
    Bricard J.:La fixation des petits ions atmosphériques sur les aérosols ultrafins. Geofis. pura e appl., 51, 237 (1962).CrossRefGoogle Scholar
  12. (12).
    Keefe D. &Nolan P. J.:Influence of image forces on combination in aerosols.Ibidem,, 50, 155 (1961).CrossRefGoogle Scholar
  13. (13).
    Lassen L.:Die Anlagerung radioaktiver Atome an Aerosolen im Grössenbereich 0.7–5 μ (Radius). Z. Physik, 163, 363 (1961).CrossRefGoogle Scholar
  14. (14).
    Smoluchowski M.:Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. phys. Chem., 92, 144 (1917).Google Scholar

Copyright information

© Istituto Geofisico Italiano 1963

Authors and Affiliations

  • N. A. Fuchs
    • 1
  1. 1.Karpov-Institute of Physical ChemistryMoscow-120USSR

Personalised recommendations