Journal of thermal analysis

, Volume 47, Issue 5, pp 1419–1436 | Cite as

Influence of heating and cooling rates on the glass transition temperature and the fragility parameter of sorbitol and fructose as measured by DSC

  • D. Simatos
  • G. Blond
  • G. Roudaut
  • D. Champion
  • J. Perez
  • A. L. Faivre


The glass transition temperatures of sorbitol and fructose were characterized by four points determined on DSC heating thermograms (onset, mid-point, peak and end-point), plus the limit fictive temperature. The variations of these temperature values, observed as functions of cooling and heating rates, were used to determine the fragility parameter, as defined by Angell [1] to characterize the temperature dependence of the dynamic behavior of glass-forming liquids in the temperature range above the glass transition.

The apparent activation energy values, determined for the different temperatures studied, were similar for fructose and sorbitol. These values were compared to data obtained from other techniques, such as mechanical spectroscopy. The variations of the apparent activation values, observed in experiments involving cooling and heating at the same rate, slow cooling followed by rate-heating, or rate-cooling followed by fast heating, were explained by aging effects occurring during the heating step.


cooling/heating rate DSC fragility parameter glass transition temperature sorbitol-fructose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Angell, in Relaxations in Complex Systems, K. Ngai and G. B. Wright, eds., National Technical Information Service, US Department of Commerce, Springfield, VA 1985, p. 1.Google Scholar
  2. 2.
    H. Levine and L. Slade, Cryo-Letters, 9 (1988) 21.Google Scholar
  3. 3.
    H. Levine and L. Slade, in Water Science Reviews, vol. 3, F. Franks, ed., Cambridge University Press, Cambridge 1988, p. 79.Google Scholar
  4. 4.
    L. Slade and H. Levine, CRC Crit. Rev. Food Sci. Nutr., 30 (1991) 115.Google Scholar
  5. 5.
    L. Slade and H. Levine, in The Glassy State in Foods, J. M. V. Blanshard and P. J. Lillford, eds., Nottingham University Press, Loughborough 1993, p. 35.Google Scholar
  6. 6.
    Y. Roos and M. Karel, Food Technol., 45 (1991) 66.PubMedGoogle Scholar
  7. 7.
    J. L. Kokini, A. M. Cocero, H. Madeka and E. de Graaf, Trends Food Sci. Technol., 5 (1994) 281.Google Scholar
  8. 8.
    M. L. Williams, R. F. Landel and J. D. Ferry, J. Am. Chem. Soc., 77 (1955) 3701.Google Scholar
  9. 9.
    J. M. Hutchinson, Prog. Polym. Sci., 20 (1995) 703.Google Scholar
  10. 10.
    J. M. Hutchinson, Progr. Colloid Polym. Sci., 87 (1992) 69.Google Scholar
  11. 11.
    C. T. Moynihan, J. Am. Ceram. Soc., 75 (1993) 1081.Google Scholar
  12. 12.
    J. Perez, Physique et Mecanique des Polymeres Amorphes Lavoisier, Paris 1992.Google Scholar
  13. 13.
    C. A. Angell, L. Monnerie and L. M. Torell, Symp. Mat. Res. Soc., 215 (1991) 3.Google Scholar
  14. 14.
    C. A. Angell, R. D. Bressel, J. L. Green, H. Kanno, M. Oguni and E. J. Sare, in Water in Foods, P. Fito, A. Mulet and B. Mc Kenna, eds. Elsevier Appl. Sc., London 1994, p. 115.Google Scholar
  15. 15.
    ASTM Standard Method E 1356-91.Google Scholar
  16. 16.
    J. D. Menczel and T. M. Leslie, J. Thermal Anal., 40 (1993) 957.Google Scholar
  17. 17.
    I. M. Hodge, J. Non-Cryst. Solids, 169 (1994) 211Google Scholar
  18. 18.
    C. T. Moynihan, A. J. Easteal, J. Wilder and J. Tucker, J. Phys. Chem., 78 (1974) 2673.Google Scholar
  19. 19.
    H. Vogel, Physikal. Zeits., 22 (1921) 645.Google Scholar
  20. 20.
    G. S. Fulcher, Am. Ceram. Soc., 8 (1925) 339, 789.Google Scholar
  21. 21.
    G. Tammann and W. Hesse, Zeits. Anorgan. Allgem. Chem., 156 (1926) 245.Google Scholar
  22. 22.
    C. A. Angell and D. L. Smith, J. Phys. Chem., 86 (1982) 3845.Google Scholar
  23. 23.
    M. A. Debolt, A. J. Easteal, P. B. Macedo and C. T. Moynihan, J. Am. Ceram. Soc., 59 (1976) 16.Google Scholar
  24. 24.
    R. Böhmer, K. L. Ngai, C. A. Angell and D. J. Plazek, J. Chem. Phys., 5 (1993) 4201.Google Scholar
  25. 25.
    C. A. Angell, R. C. Stell and W. Sichina, J. Phys. Chem., 86 (1982) 1540.Google Scholar
  26. 26.
    J. J. Aklonis and W. J. MacKnight, Introduction to Polymer Viscoelasticity, Wiley-Interscience, New York 1983.Google Scholar
  27. 27.
    A. L. Faivre, (1996) submitted.Google Scholar
  28. 28.
    A. L. Ollett and R. Parker, J. Text. Stud., 21 (1990) 355.Google Scholar
  29. 29.
    P. D. Orford, R. Parker and S.G. Ring, Carbohydr. Res., 196 (1990) 11.PubMedGoogle Scholar
  30. 30.
    C. A. Angell, J. Phys. Chem. Sol., 49 (1988) 863.Google Scholar
  31. 31.
    C. A. Angell, J. Non-Cryst. Sol., 13 (1991) 131.Google Scholar
  32. 32.
    J. Fan and C. A. Angell, Thermochim. Acta, 266 (1995) 9.Google Scholar
  33. 33.
    C. T. Moynihan, A. J. Burce, D. L. Gavin, S. R. Loehr, S. M. Opalka and M.G. Drexhage, Polymer Eng. Sci., 24 (1984) 1117.Google Scholar
  34. 34.
    E. J. Donth, Relaxation and Thermodynamics in Polymers, Akademie Verlag, Berlin 1992.Google Scholar
  35. 35.
    W. C. Hasz and C. T. Moynihan, J. Non-Cryst. Solids, 40 (1992) 285.Google Scholar
  36. 36.
    J. Perez, J. Y. Cavaille, R. Diaz Calleja, J. L. Gomez Ribelles, M. Montlèon Pradas and A. Ribes Greus, Makromol. Chem., 192 (1991) 2141.Google Scholar
  37. 37.
    J. M. Hutchinson, J. Singh, R. W. Rychwalski, M. Delin, J. Kubat and C. Klason, 1st Int. Conf. Mechanics of Time Dependent Materials, Ljubljana (1995) 67.Google Scholar
  38. 38.
    J. Perez and J. Y. Cavaille. J. Non-Cryst. Sol., 172–174 (1994) 1028.Google Scholar
  39. 39.
    W. Pascheto, M. G. Parthun, A. Hallbrucker and G. P. Johari, J. Non-Cryst. Solids, 171 (1994) 182.Google Scholar
  40. 40.
    M. Le Meste, in Food Preservation by Moisture Control, G. V. Barbosa-Canovas and J. Welti-Chanes, eds., Technomic, Lancaster 1995, p. 209.Google Scholar
  41. 41.
    M. Le Meste, S. Davidou and G. Roudeau, J. Thermal Anal., 47 (1996) 1361.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • D. Simatos
    • 1
  • G. Blond
    • 1
  • G. Roudaut
    • 1
  • D. Champion
    • 1
  • J. Perez
    • 2
  • A. L. Faivre
    • 2
  1. 1.ENSBANA- Campus UniversitaireDijon
  2. 2.Laboratoire GEMPPMCNRS-INSAVilleurbanneFrance

Personalised recommendations