Journal of thermal analysis

, Volume 47, Issue 5, pp 1339–1360 | Cite as

Structure and properties of bread dough and crumb

Calorimetric, rheological and mechanical investigations on the effects produced by hydrocolloids, pentosans and soluble proteins
  • A. Schiraldi
  • L. Piazza
  • O. Brenna
  • E. Vittadini
Article

Abstract

The effects of hydrocolloids (guar and locust bean gums), soluble pentosans, and whey proteins on staling of bread crumb were investigated by means of DSC, rheometry, and image analyis. One current hypothesis, that these ingredients would behave as “water binders” and, at least the former two, as anti-staling agents, was indeed confirmed, although this action might be indirect. All the samples considered showed an exothermic DSC peak preceding the endotherm of the amylopectin fusion. According to a previous work, this signal was attributed to a water-dependent cross-linking process that would involve next-neighbouring polymer chains.

To check the effect produced by molecular modifications that were expected to increase the water uptake of these ingredients, doughs containing added succinylated pentosans and whey proteins, and a polycarboxylate polymer, PEMULEN TR-1, were examined. These modifications enhanced starch retrogradation and yielded a firmer crumb. It was tentatively concluded that some direct interaction between these modified molecules and the crumb polymers might have taken place.

In line with the food polymer science approach, the use of Time-Temperature-Transformation (TTT) diagrams is also discussed.

Keywords

bread crumb bread dough DSC hydrocolloid mechanical properties pentosans protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Hoseney, K. J. Zeleznak and C. S. Lai, Cereal Chem., 63 (1986) 285.Google Scholar
  2. 2.
    L. Slade and H. Levine, Crit. Rev. Food Sci. Nutr., 30 (1991) 115.PubMedGoogle Scholar
  3. 3.
    D. D. Christianson, J. E. Hodge, D. Osborne and P. W. Detroy Cereal Chem., 58 (1981) 513.Google Scholar
  4. 4.
    G. E. Attenburrow, D. J. Barnes, A. P. Davies and S. J. Ingman, J. Cereal Sci., 12 (1990) 1.Google Scholar
  5. 5.
    M. L. Martin and R. C. Hoseney, Cereal Chem., 68 (1991) 503.Google Scholar
  6. 6.
    M. Le Meste, V. T. Huang, J. Panama, G. Anderson and R. Lentz, Cereal Foods World, 37 (1992) 264.Google Scholar
  7. 7.
    L. Slade and H. Levine, J. Food Eng., 22 (1994) 143.Google Scholar
  8. 8.
    D. E. Rogers, K. J. Zeleznak and R. C. Hoseney, Cereal Chem., 65 (1988) 398.Google Scholar
  9. 9.
    M. L. Martin, K. J. Zeleznak and R. C. Hoseney, Cereal Chem., 68 (1991) 498.Google Scholar
  10. 10.
    A. Schiraldi, L. Piazza and M. Riva, Cereal Chem., 73 (1996) 32.Google Scholar
  11. 11.
    M. Gudmundsson, A.-C. Eliasson, S. Bengtsson and P. åman, Starch, 43 (1991) 5.Google Scholar
  12. 12.
    M. Michniewicz, C. G. Biliaderis and W. Bushuk, Cereal Chem., 68 (1991) 252.Google Scholar
  13. 13.
    B. L. D'Apollonia, and M. M. Morad, Cereal Chem., 58 (1981) 186.Google Scholar
  14. 14.
    S. K. Kim and B. L. D'Apollonia, Cereal Chem., 54 (1977) 150.Google Scholar
  15. 15.
    E. Mettler, W. Seibel, K. Münzing, U. Fast and K. Pfeilsticker, Getreide Mehl Brot, 46 (1992) 205.Google Scholar
  16. 16.
    E. Mettler, W. Seibel, J. M. Brummer and K. Pfeilsticker, Getreide Mehl Brot, 46 (1992) 43.Google Scholar
  17. 17.
    E. Mettler and W. Seibel, Cereal Chem., 70 (1993) 373.Google Scholar
  18. 18.
    E. Farkas and M. Glicksman, Food Technol., 21 (1967) 49.Google Scholar
  19. 19.
    M. Glicksman, in “Polysaccharides in Foods”, J. M. V. Blanshard and J. R. Mitchell, eds., Butterworths, London, U.K. 1979, p. 185.Google Scholar
  20. 20.
    F. M. Ward and S. A. Andon, Cereal Foods World, 38 (1993) 748.Google Scholar
  21. 21.
    N. Garti and D. Reichman, Food Structure; 12 (1993) 411.Google Scholar
  22. 22.
    J. Michniewicz, C. G. Biliaderis and W. Bushuk, Food Chem., 43 (1992) 251.Google Scholar
  23. 23.
    J. Longton and G. A. Le Grys, Starch, 33 (1981) 410.Google Scholar
  24. 24.
    M. Jankiewicz and J. Michniewicz, Food Chem., 25 (1987) 241.Google Scholar
  25. 25.
    O. Brenna, P. L. Gherardini and M. Rossi, Proc. XIV Int. Conf Groupe Polyphenols (JIEP 88), Bull. Liason Groupe Polyphenols, 14 (1988) 81.Google Scholar
  26. 26.
    P. Venzo, Graduation Thesis, University of Milan, Italy, 1993.Google Scholar
  27. 27.
    M. Riva and A. Schiraldi, Thermochim. Acta, 220 (1993) 117.Google Scholar
  28. 28.
    C. G. Biliaderis, T. J. Maurice and J. R. Vose, J. Food Sci., 45 (1980) 1669.Google Scholar
  29. 29.
    B. Zanoni, A. Schiraldi and R. Simonetta, J. Food Eng., 24 (1995) 25.Google Scholar
  30. 30.
    J. A. L. Da Silva and M. A. Rao, in “Viscoelastic Properties of Foods”, M. A. Rao and J. F. Steffe, eds., Elsevier, Barking, England, 1992, p. 285.Google Scholar
  31. 31.
    P. B. Fernandes, M. P. Goncalves and J. L. Doublier, Carbohydr. Polym., 16 (1991) 253.Google Scholar
  32. 32.
    M. Perego, graduation Thesis, University of Milan (1993).Google Scholar
  33. 33.
    S. Cavella, L. Piazza and P. Masi, Ital. J. Food. Sci., 4 (1990) 235.Google Scholar
  34. 34.
    D. Weipert, Cereal Chem., 67 (1990) 311.Google Scholar
  35. 35.
    A. C. Eliasson, in “New Approaches to Research on Cereal Carbohydrates”, R. D. Hill and L. Munk, eds., Elsevier, Amsterdam 1985, p. 93.Google Scholar
  36. 36.
    K. J. Zeleznak and R. C. Hoseney, Starch, 39 (1987) 231.Google Scholar
  37. 37.
    Z. Czuchajowska and Y. Pomeranz, Cereal Chem., 66 (1989) 305.Google Scholar
  38. 38.
    A. Schiraldi and P. Rossi, in “Thermal Analysis”, B. Miller ed., John Wiley & Sons, Chichester, vol. II, 1982, p. 1151.Google Scholar
  39. 39.
    J. K. Gillham, in “The Role of Polymeric Matrix in the Processing and Structural Properties of Composite Materials”, J. C. Seferis and L. Nicolais, eds., Plenum, New York 1983 p. 127.Google Scholar
  40. 40.
    L. H. Sperling, “Introduction to Physical Polymer Science”, John Wiley & Sons, New York 1986.Google Scholar
  41. 41.
    A. Schiraldi, Thermochim. Acta, 96 (1985) 283.Google Scholar
  42. 42.
    A. Schiraldi, P. Baldini and E. Pezzati, J. Thermal Anal., 30 (1985) 1343.Google Scholar
  43. 43.
    A. Schiraldi, E. Pezzati and P. Baldini, Thermochim. Acta, 120 (1987) 315.Google Scholar
  44. 44.
    M. Riva and A. Schiraldi, Ital. J. Food Sci., 6 (1994) 43.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • A. Schiraldi
    • 1
  • L. Piazza
    • 1
  • O. Brenna
    • 1
  • E. Vittadini
    • 1
    • 2
  1. 1.DISTAM, University of MilanMilanItaly
  2. 2.Dept. Food. Sci., Chenoweth LaboratoryUniversity of Massachusetts at AmherstAmherstUSA

Personalised recommendations