Journal of thermal analysis

, Volume 47, Issue 5, pp 1247–1266 | Cite as

Effect of hydrocolloids on starch thermal transitions, as measured by DSC

  • C. Ferrero
  • M. N. Martino
  • N. E. Zaritzky
Article

Abstract

Differential scanning calorimetry (DSC) was used to analyze the influence of different hydrocolloids (xanthan, guar, and locust bean gums, carboxymethylcellulose and sodium alginate) on the gelatinization of corn starch in systems with starch concentration ranging between 0.1 and 0.7 g starch/g mixture. The reduction of available water produced a shift in gelatinization temperature, especially of the conclusion temperature. The effect was more marked for ionic hydrocolloids. The influence of hydrocolloids on glass transition temperature (Tg) of gelatinized starch suspensions and on the glass transition temperature of the maximally freeze-concentrated solute/unfrozen water matrix (T′g) was also studied.T′g onset values ranged between −4.5 and −5.5‡C for corn starch pastes with and without hydrocolloids. Those hydrocolloids that increased the viscosity of the unfrozen matrix inhibited additional ice formation during thawing (devitrification).

Starch concentration and final heating temperature were found to be relevant factors affecting the kinetics of amylopectin retrogradation during frozen storage at −4‡C. Xanthan gum failed to prevent amylopectin retrogradation; this observation could be attributed to the fact that gums act outside the starch granule, while amylopectin retrogradation takes place within the granule.

Keywords

annealing frozen storage gelatinization glass transition hydrocolloids retrogradation starch pastes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Miles, V. J. Morris, P. D. Orford and S. G. Ring, Carbohydr. Res., 135 (1985) 271.Google Scholar
  2. 2.
    J. Lelievre, J. Appl. Polym. Sci., 18 (1973) 293.Google Scholar
  3. 3.
    D. B. Lund, in Physical Properties of Foods (M. Peleg and E. B. Bagley, eds.), AVI, West-port, CT 1983, p. 125.Google Scholar
  4. 4.
    C. G. Biliaderis, C. M. Page, T. J. Maurice and B. O. Juliano, J. Agric. Food Chem., 34 (1986) 6.Google Scholar
  5. 5.
    L. Slade and H. Levine, in Industrial Polysaccharides: The Impact of Biotechnology and Advanced Methodologies (S. S. Stivala, V. Crescenzi and I. C. M. Dea, eds.), Gordon and Breach Science, New York 1987, p. 387.Google Scholar
  6. 6.
    Y. Roos and M. Karel, J. Food Sci., 56 (1991) 38.Google Scholar
  7. 7.
    C. G. Biliaderis, in Water Relationships in Food (H. Levine and L. Slade, eds.), Plenum Press, New York 1991, p. 251.Google Scholar
  8. 8.
    L. Slade and H. Levine, in Food Structure — Its Creation and Evaluation (J. M. V. Blanshard and J. R. Mitchell, eds.), Butterworths, London 1988, p. 115.Google Scholar
  9. 9.
    M. L. Williams, R. F. Landel and J. D. Ferry, J. Am. Chem. Soc., 77 (1955) 3701.Google Scholar
  10. 10.
    H. L. Hanson, A. Campbell and H. Lineweaver, Food Technol., 5 (1951) 432.Google Scholar
  11. 11.
    E. Osman and P. Cummisford, Food Res., 24 (1959) 595.Google Scholar
  12. 12.
    T. J. Schoch, Bakers' Dig., 39 (1965) 48.Google Scholar
  13. 13.
    N. I. Brunnek and E. K. Koptelova, Konservnaya i Ovoshchesushil'naya Promyshlennost', 11 (1970) 36.Google Scholar
  14. 14.
    S. Suzuki, M. Mitsuko and O. Yoshie, Nippon Shokuhin Kogyo Gakkaishi, 24 (1977) 362.Google Scholar
  15. 15.
    H. Przybyl, M. Boruch and M. Urbaniak, XVI Congrès International du Froid (Paris, 1983) Comptes Rendus, Tome III, p. 705.Google Scholar
  16. 16.
    P. J. White, I. R. Abbas and L. A. Johnson, Starch, 41 (1989) 176.Google Scholar
  17. 17.
    C. Ferrero, M. N. Martino and N. E. Zaritzky, Int. J. Food Sci. Technol., 28 (1993) 481.Google Scholar
  18. 18.
    C. Ferrero, M. N. Martino and N. E. Zaritzky, J. Food Proc. Preserv., 17 (1993) 191.Google Scholar
  19. 19.
    C. Ferrero, M. N. Martino and N. E. Zaritzky, Starch, 46 (1994) 300.Google Scholar
  20. 20.
    L. Wilkinson, SYSTAT: The System for Statistics (SYSTAT, Inc.), Evanston, IL 1990, p. 114, 342.Google Scholar
  21. 21.
    G. E. P. Box, W. G. Hunter and J. S. Hunter, Statistics for Experimenters: an Introduction to Design, Data Analysis and Model Building (J. Wiley, ed.), New York 1978, p. 165.Google Scholar
  22. 22.
    K. Eberstein, R. Höpcke, G. Konieczny-Janda and R. Stute, Starch, 32 (1980) 397.Google Scholar
  23. 23.
    K. Ghiasi, R. C. Hoseney and E. Varriano-Marston, Starch, 60 (1982) 58.Google Scholar
  24. 24.
    D. D. Christianson, in Food Carbohydrates (D. Lineback and G. Inglett, eds.), AVI, Westport, CT 1982, p. 399.Google Scholar
  25. 25.
    M. Alloncle, J. Lefebvre, G. Llamas and J. L. Doublier, Cereal Chem., 66 (1989) 90.Google Scholar
  26. 26.
    C. G. Biliaderis, Can. J. Physiol. Pharmacol., 69 (1991) 60.PubMedGoogle Scholar
  27. 27.
    M. A. Wirakartakusumah, Ph. D. Thesis, University of Wisconsin-Madison, Wisconsin 1981.Google Scholar
  28. 28.
    J. W. Donovan, Biopolymers, 18 (1979) 263.Google Scholar
  29. 29.
    I. D. Evans and D. R. Haisman, Starch, 34 (1982) 224.Google Scholar
  30. 30.
    L. Slade and H. Levine, in Proceedings 13th Annual NATAS Conf. (A. R. McGhie, ed.), NATAS, Philadelphia 1984, p. 64.Google Scholar
  31. 31.
    T. J. Maurice, L. Slade, R. R. Sirett and C. M. Page, In Properties of Water in Foods (D. Simatos and J. L. Multon eds.), Martinus Nijhoff, Dordrecht, Netherlands 1985, p. 211.Google Scholar
  32. 32.
    C. G. Biliaderis, Food Tech., 46 (1992) 98.Google Scholar
  33. 33.
    V. J. Morris, Trends Food Sci. Technol., 1 (1990) 2.Google Scholar
  34. 34.
    Y. Roos, J. Food Eng., 24 (1995) 339.Google Scholar
  35. 35.
    Y. Roos and M. Karel, Int. J. Food Sci. Technol., 26 (1991) 553.Google Scholar
  36. 36.
    L. Slade and H. Levine, Advances Food Nutr. Res., 38 (1995) 103.Google Scholar
  37. 37.
    L. Slade and H. Levine, Crit. Rev. Food Sci. Nutr., 30 (1991) 115.PubMedGoogle Scholar
  38. 38.
    R. M. Huang, W. H. Chang, Y. H. Chang and C. Y. Lii, Cereal Chem., 71 (1994) 202.Google Scholar
  39. 39.
    M. Le Meste, V. T. Huang, J. Panama, G. Anderson and R. Lentz, Cereal Foods World, 37 (1992) 264.Google Scholar
  40. 40.
    J. Longton and G. A. LeGrys, Starch, 33 (1981) 410.Google Scholar
  41. 41.
    P. L. Russell, Starch, 35 (1983) 277.Google Scholar
  42. 42.
    T. Jankowski and C. K. Rha, Starch, 35 (1986) 6.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • C. Ferrero
    • 1
  • M. N. Martino
    • 1
    • 2
  • N. E. Zaritzky
    • 1
    • 2
  1. 1.CONICET Facultad de Ciencias ExactasCentro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)La Plata
  2. 2.Departamento de Ingeniería Química, Facultad de Ingeniería QuímicaUniversidad Nacional de La PlataArgentina

Personalised recommendations