Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain ofListeria monocytogenes causing endocarditis

  • K. Hadorn
  • H. Hächler
  • A. Schaffner
  • F. H. Kayser


One susceptible and two multiply resistant isolates ofListeria monocytogenes from a patient suffering from prosthetic valve endocarditis are described. They could not be distinguished by several typing methods. Two isolates were resistant to chloramphenicol, macrolide/lincosamide/streptogramin antibiotics and tetracycline. The resistance determinants were located on a 39 kb plasmid pWDB100 that was transferable by filter mating to several gram-positive bacteria. Evidence was obtained to support the hypothesis that the resistant variant had primarily infected the patient's blood and prosthetic valve, and later lost the resistance plasmid. The three resistance determinants showed homology to other known markers,cat221/cat223,ermB andtetM, which are frequently found in different gram-positive genera. Plasmid pWDB100 showed extensive homology to theStreptococcus agalactiae broad-host-range plasmid pIP501. It was also very similar to two listerial plasmids found in France. Thus, plasmid pWDB100 and the homologous plasmids from France, although isolated in geographically distant regions, may illustrate spread of a plasmid and its relatives.


Tetracycline Chloramphenicol Antibiotic Resistance Endocarditis Distant Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schuchat A, Swaminathan B, Broome CV Epidemiology of human listeriosis. Clinical Microbiology Reviews 1991, 4: 169–183.PubMedGoogle Scholar
  2. 2.
    Klinger JD Isolation ofListeria: a review of procedures and future prospects. Infection 1988, 16, Supplement 2: 98–105.CrossRefPubMedGoogle Scholar
  3. 3.
    Hof H, Hefner P Pathogenicity ofListeria monocytogenes in comparison to otherListeria species. Infection 1988, 16, Supplement 2: 141–144.CrossRefPubMedGoogle Scholar
  4. 4.
    Gellin BG, Broome C Listeriosis. Journal of the American Medical Association 1989, 261: 1313–1320.CrossRefPubMedGoogle Scholar
  5. 5.
    Marget W, Seeliger HP Listeria monocytogenes infections: therapeutic possibilities and problems. Infection 1988, 16, Supplement 2: 175–177.CrossRefPubMedGoogle Scholar
  6. 6.
    Gallagher PG, Watanakunakorn C Listeria monocytogenes endocarditis: a review of the literature 1950–1986. Scandinavian Journal of Infectious Diseases 1988, 20: 359–368.PubMedGoogle Scholar
  7. 7.
    Larsson S, Walder MH, Cronberg SN, Forsgren AB, Moestrup T Antimicrobial susceptibilities ofListeria monocytogenes strains isolated from 1958 to 1982 in Sweden. Antimicrobial Agents and Chemotherapy 1985, 28: 12–14.PubMedGoogle Scholar
  8. 8.
    Espaze EP, Reynaud AE Antibiotic susceptibilities ofListeria: in vitro studies. Infection 1988, 16, Supplement 2: 160–164.CrossRefGoogle Scholar
  9. 9.
    MacGowan AP, Holt HA, Bywater MJ, Reeves DS In vitro antimicrobial susceptibility ofListeria monocytogenes isolated in the UK and otherListeria species. European Journal of Clinical Microbiology and Infectious Diseases 1990, 9: 767–770.Google Scholar
  10. 10.
    MacGowan AP, Reeves DS, McLauchlin J Antibiotic resistance ofListeria monocytogenes. Lancet 1990, 336: 513–514.CrossRefGoogle Scholar
  11. 11.
    Buu-Hoi A, Bieth G, Horaud T Broad host range of streptococcal macrolide resistance plasmids. Antimicrobial Agents and Chemotherapy 1984, 25: 289–291.PubMedGoogle Scholar
  12. 12.
    Flamm RK, Hinrichs DJ, Thomashow MF Introduction of pAMß1 intoListeria monocytogenes by conjugation and homology between nativeL. monocytogenes plasmids. Infection and Immunity 1984, 44: 157–161.PubMedGoogle Scholar
  13. 13.
    Gaillard JL, Berche P, Sansonetti P Transposon mutagenesis as a tool to study the role of hemolysin in the virulence ofListeria monocytogenes. Infection and Immunity 1986, 52: 50–55.PubMedGoogle Scholar
  14. 14.
    Perez-Diaz JC, Vicente MF, Baquero F Plasmids inListeria. Plasmid 1982, 8: 112–118.CrossRefPubMedGoogle Scholar
  15. 15.
    Leclercq R, Derlot E, Weber M, Duval J, Courvalin P Transferable vancomycin and teicoplanin resistance inEnterococcus faecium. Antimicrobial Agents and Chemotherapy 1989, 33: 10–5.PubMedGoogle Scholar
  16. 16.
    Kathariou S, Metz P, Hof H, Goebel W Tn916-induced mutations in the hemolysin determinant affecting virulence ofListeria monocytogenes. Journal of Bacteriology 1987, 169: 1291–1297.PubMedGoogle Scholar
  17. 17.
    Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P Listeriolysin O is essential for virulence ofListeria monocytogenes: direct evidence obtained by gene complementation. Infection and Immunity 1989, 57: 3629–3636.PubMedGoogle Scholar
  18. 18.
    Doucet-Populaire F, Trieu-Cuot P, Dosbaa I, Andremont A, Courvalin P Inducible transfer of conjugative transposon Tn1545 fromEnterococcus faecalis toListeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrobial Agents and Chemotherapy 1991, 35: 185–187.PubMedGoogle Scholar
  19. 19.
    Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P Transferable plasmid-mediated antibiotic resistance inListeria monocytogenes. Lancet 1990, 335: 1422–1426.CrossRefPubMedGoogle Scholar
  20. 20.
    Quentin C, Thibaut MC, Horovitz J, Bebear C Multiresistant strain ofListeria monocytogenes in septic abortion. Lancet 1990, 336: 375.CrossRefGoogle Scholar
  21. 21.
    Poyart-Salmeron C, Trieu-Cuot P, Carlier C, MacGowan A, McLauchlin J, Courvalin P Genetic basis of tetracycline resistance in clinical isolates ofListeria monocytogenes. Antimicrobial Agents and Chemotherapy 1992, 36: 463–466.PubMedGoogle Scholar
  22. 22.
    Engel HWB, Soedirman N, Rost JA, Van Leeuwen WJ, Van Embden JDA Transferability of macrolide, lincomycin, and streptogramin resistances between group A, B, and D streptococci,Streptococcus pneumoniae andStaphylococcus aureus. Journal of Bacteriology 1980, 142: 407–413.PubMedGoogle Scholar
  23. 23.
    Brosius J, Ullrich A, Raker MA, Gray A, Dull TJ, Gutell RR, Noller HF Construction and fine mapping of recombinant plasmids containing therrnB ribosomal RNA operon ofE. coli. Plasmid 1981, 6: 112–118.CrossRefPubMedGoogle Scholar
  24. 24.
    Wilson CR, Skinner SE, Shaw WV Analysis of two chloramphenicol resistance plasmids fromStaphylococcus aureus: insertional inactivation of Cm resistance, mapping of restriction sites, and construction of cloning vehicles. Plasmid 1981, 5: 245–258.CrossRefPubMedGoogle Scholar
  25. 25.
    Zyprian E Analyse von Genexpressionssignalen in dem grampositiven Kanamycinresistenzplasmid pUB110, Entwicklung eines grampositiven Expressionsvektorsystems und Charakterisierung des induzierbaren Chloramphenicolacetyltransferasegens auf demStaphylococcus aureus Plasmid pC223. Ph.D. Thesis, University of Heidelberg, Germany, 1987.Google Scholar
  26. 26.
    Brückner R, Matzura H Regulation of the inducible chloramphenicol acetyltransferase gene of theStaphylococcus aureus plasmid pUB112. EMBO Journal 1985, 4: 2295–2300.PubMedGoogle Scholar
  27. 27.
    Horinouchi S, Weisblum B Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Journal of Bacteriology 1982, 150: 815–825.PubMedGoogle Scholar
  28. 28.
    Duvall EJ, Williams DM, Lovett PS, Rudolph C, Vasantha N, Guyer M Chloramphenicol-inducible gene expression inBacillus subtilis. Gene 1983, 24: 171–177.CrossRefPubMedGoogle Scholar
  29. 29.
    Abraham LJ, Berryman DI, Rood JI Hybridization analysis of the class P tetracycline resistance determinant from theClostridium perfringens R-plasmid, pCW3. Plasmid 1988, 19: 113–120.CrossRefPubMedGoogle Scholar
  30. 30.
    Mabilat C, Courvalin P Gene heterogeneity for resistance to macrolides, lincosamides and streptogramins inEnterobacteriaceae. Annales de l'Institut Pasteur/Microbiologie 1988, 139: 677–681.CrossRefGoogle Scholar
  31. 31.
    Berger-Bächi B Increase in transduction efficiency of Tn551 mediated by the methicillin resistance marker. Journal of Bacteriology 1983, 154: 533–535.PubMedGoogle Scholar
  32. 32.
    Khan SA, Novick RP Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid fromStaphylococcus aureus. Plasmid 1983, 10: 251–259.CrossRefPubMedGoogle Scholar
  33. 33.
    Burdett V, Inamine J, Rajagopalan S Heterogeneity of tetracycline resistance determinants inStreptococcus. Journal of Bacteriology 1982, 149: 995–1004.PubMedGoogle Scholar
  34. 34.
    LeBlanc DJ, Lee LN, Titmas BM, Smith CJ, Tenover FC Nucleotide sequence analysis of tetracycline resistance genetetO fromStreptococcus mutans DL5. Journal of Bacteriology 1988, 170: 3618–3626.PubMedGoogle Scholar
  35. 35.
    Gawron-Burke C, Clewell DB Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 inEscherichia coli: strategy for targeting and cloning of genes from grampositive bacteria. Journal of Bacteriology 1984, 159: 214–221.PubMedGoogle Scholar
  36. 36.
    Martin P, Trieu-Cuot P, Courvalin P Nucleotide sequence of thetetM tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn1545. Nucleic Acids Research 1986, 14: 7047–7058.PubMedGoogle Scholar
  37. 37.
    Burdett V, Inamine J, Rajagopalan S Multiple tetracycline resistance determinants inStreptococcus. In: Schlessinger D (ed): Microbiology-1982. American Society for Microbiology, Washington DC, 1982, p. 155–158.Google Scholar
  38. 38.
    Evans RP, Macrina FL Streptococcal R plasmid pIP501: endonuclease site map, resistance determinant location, and construction of novel derivatives. Journal of Bacteriology 1983, 154: 1347–1355.PubMedGoogle Scholar
  39. 39.
    Sambrook J, Fritsch EF, Maniatis T Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.Google Scholar
  40. 40.
    National Committee for Clinical Laboratory Standards Performance standards for antimicrobial susceptibility tests. NCCLS documents M2-A4 and M7-A2. NCCLS, Villanova, PA., 1990.Google Scholar
  41. 41.
    Hadorn K, Lenz W, Kayser FH, Shalit I, Krasemann C Use of a ribosomal RNA gene probe for the epidemiological study of methicillin and ciprofloxacin resistantStaphylococcus aureus. European Journal of Clinical Microbiology and Infectious Diseases 1990, 9: 649–653.CrossRefGoogle Scholar
  42. 42.
    Kieser T Factors affecting the isolation of CCC DNA fromStreptomyces lividans andEscherichia coli. Plasmid 1984, 12: 19–36.CrossRefPubMedGoogle Scholar
  43. 43.
    Gillespie MT, Skurray RA Structural relationships among chloramphenicol-resistance plasmids ofStaphylococcus aureus. FEMS Microbiology Letters 1988, 51: 205–210.CrossRefGoogle Scholar
  44. 44.
    Caillaud F, Carlier C, Courvalin P Physical analysis of the conjugative shuttle transposon Tn1545. Plasmid 1987, 17: 58–60.CrossRefPubMedGoogle Scholar
  45. 45.
    Horaud T, LeBouguenec C, Pepper K Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci. Journal of Antimicrobial Chemotherapy 1985, 16, Supplement A: 111–135.Google Scholar
  46. 46.
    Vicente MF, Baquero F, Perez DJC Conjugative acquisition and expression of antibiotic resistance determinants inListeria spp. Journal of Antimicrobial Chemotherapy 1988, 21: 309–318.PubMedGoogle Scholar
  47. 47.
    Cardoso M, Schwarz S Chloramphenicol resistance plasmids inStaphylococcus aureus isolated from bovine subclinical mastitis. Veterinary Microbiology 1992, 30: 223–232.CrossRefPubMedGoogle Scholar
  48. 48.
    Schwarz S, Cardoso M Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 fromStaphylococcus aureus. Antimicrobial Agents and Chemotherapy 1991, 35: 1551–1556.PubMedGoogle Scholar
  49. 49.
    Tomich PK, An FY, Clewell DB Properties of erythromycin-inducible transposon Tn917 inStreptococcus faecalis. Journal of Bacteriology 1980, 141: 1366–1374.PubMedGoogle Scholar
  50. 50.
    Novick RP, Edelman I, Schwesinger MD, Gruss AD, Swanson EC, Pattee PA Genetic translocation inStaphylococcus aureus. Proceedings of the National Academy of Sciences of the USA 1979, 76: 400–404.PubMedGoogle Scholar
  51. 51.
    Salyers AA, Speer BS, Shoemaker NB New perspectives in tetracycline resistance. Molecular Microbiology 1990, 4: 151–156.PubMedGoogle Scholar
  52. 52.
    Burdett V Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. Journal of Biological Chemistry 1991, 266: 2872–2877.PubMedGoogle Scholar
  53. 53.
    Charpentier E, Gerbaud G, Courvalin P Characterization of a new class of tetracycline-resistance genetet(S) inListeria monocytogenes BM4210. Gene 1993, 131: 27–34.CrossRefPubMedGoogle Scholar
  54. 54.
    Graves LM, Swaminathan B, Reeves MW, Wenger J Ribosomal DNA fingerprinting ofListeria monocytogenes using a digoxigenin-labelled DNA probe. European Journal of Epidemiology 1991, 7: 77–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Jacquet C, Bille J, Rocourt J Typing ofListeria monocytogenes by restriction polymorphism of the ribosomal ribonucleic acid gene region. International Journal of Medical Microbiology, Virology, Parasitology and Infectious Diseases 1992, 276: 356–365.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1993

Authors and Affiliations

  • K. Hadorn
    • 1
  • H. Hächler
    • 1
  • A. Schaffner
    • 2
  • F. H. Kayser
    • 1
  1. 1.Institute of Medical MicrobiologyUniversity of ZurichZurichSwitzerland
  2. 2.University Hospital of ZurichZurichSwitzerland

Personalised recommendations