Journal of Biological Physics

, Volume 10, Issue 4, pp 189–198 | Cite as

The spontaneous magnetization of nickel

  • George H. Czerlinski


The original data of Weiss and Forrer on nickel are reanalyzed with the aim to obtain a simple empirical relation between the spontaneous magnetization and the temperature both below and above the Curie temperature. A simple relation between the spontaneous magnetization and the temperature is needed to separate easily between the ferromagnetic and the paramagnetic region in the plane given by temperature and field strength, needed for a comprehensive treatment of the magnetocaloric effect (compare J. Biol. Phys. 9, 27 (1981). Various methods of extrapolating to zero magnetic field strength are discussed and used to obtain specified values for the spontaneous magnetization at various temperatures. Starting with a simple expression of cooperativity among elements it is shown that a sufficiently good fit of models to the given data is only obtained with the assumption of three types of cooperativity differing in the intensity of coupling. This intensity of coupling is signified by the magnitude of the exponent in the independent variable (temperature).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Potter, H. H., 1934.The Magneto-Caloric Effect and Other Magnetic Phenomena in Iron, Proc. Roy. Soc. London, vol. 146A, pp. 362–387.Google Scholar
  2. 2.
    Weiss, M. P., and Forrer, R., 1926.Aimantation et Phenome Magnetocalorique du Nickel, Ann. Phys. Paris, Vol. 5, pp. 153–213.Google Scholar
  3. 3.
    Oliver, O. J., and Sucksmith, W., 1953.The Spontaneous Magnetization of Alloys and Compounds. I. Copper Nickel Alloys, Proc. Roy. Soc., London, vol.219A, pp. 1–17.Google Scholar
  4. 4.
    Ahern, S. A., Martin, M. J. C. and Sucksmith, W., 1958.The Spontaneous Magnetization of Nickel + Copper Alloys, Proc. Roy. Soc., vol.248A, pp. 145–152.Google Scholar
  5. 5.
    Clark, C. A., and Sucksmith, W., 1954.The Spontaneous Magnetization of Alloys and Compounds, II. Ferrites, Proc. Roy. Soc. London, vol.225, pp. 147–159.Google Scholar
  6. 6.
    Weiss, M. P., 1907.L'hypothese du Champ Moleculaire et la Propriete Ferromagnetique, J. De Physique, vol.6, pp. 661–690.Google Scholar
  7. 7.
    Czerlinski, G. H., 1968.Chemical Relaxation of Allosteric Models, Curr. Mod. Biol.2, 211–233.Google Scholar
  8. 8.
    Czerlinski, G. H., 1977.Differential Heating of Celltypes by Absorption of Magnetic Energy, Federation Proc., Vol. 36, pp. 693 (No. 2244).Google Scholar
  9. 9.
    Kronick, P. L., Campbell, G. LeM., and Joseph, K., 1978. Science200, 1074–1076.PubMedGoogle Scholar
  10. 10.
    Senyei, A., Widder, K., and Czerlinski, G., 1978. Appl. Physics49, 3578–3583.CrossRefGoogle Scholar
  11. 11.
    Czerlinski, G. H., on 12-30-81.Coated Magnetizable Microparticles, Reversible Suspensions Thereof and Processes Relating Thereto, U. S. Patent Application filed by Northwestern University.Google Scholar
  12. 12.
    Raub, W., 1974.The PROPHET System and Resource Sharing, Federation Proc., vol.33, pp. 2390–2392.Google Scholar
  13. 13.
    Knott, G. D., and Reece, D. K., 1972.MLAB, A Civilized Curve Fitting System, Proc. ONLINE '72 Int. Conf., vol.1, pp. 497–526, Brunel Univ., England.Google Scholar
  14. 14.
    Kouvel, J. S., and Comly, J. B., 1968.Magnetic Equation of State for Nickel Near Its Curie Point, Physical Rev. Letters20, 1237–1239.CrossRefGoogle Scholar
  15. 15.
    Domb, C. in Domb, C., and Green, M. S. eds., 1973.Phase Transitions and Critical Phenomena vol.3, p. 389, Academic Press, New York.Google Scholar
  16. 16.
    Czerlinski, G. H., 1981.The Magnetocaloric Effect on Nickel, J. Biol. Physics9, 27.CrossRefGoogle Scholar

Copyright information

© Forum Press, Inc. 1982

Authors and Affiliations

  • George H. Czerlinski
    • 1
  1. 1.Biochemistry and Biophysics ProgramsNorthwestern UniversityChicago

Personalised recommendations