On models with large automorphism groups

  • H. -D. Ebbinghaus
Article

Keywords

Mathematical Logic Automorphism Group Large Automorphism Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bell, J. L., Slomson, A. B.: Models and Ultraproducts. Amsterdam-London 1969.Google Scholar
  2. [2]
    Chang, C. C.: A note on the two cardinal problem. Proc. Amer. Math. Soc.16 (1965), 1148–1155.Google Scholar
  3. [3]
    Chang, C. C.: Some remarks on the model theory of infinitary languages. In: The Syntax and Semantics of Infinitary Languages (Ed. by J. Barwise), Berlin-Heidelberg-New York 1968, 36–63.Google Scholar
  4. [4]
    Ebbinghaus, H.-D.: On the logic with the added quantifierQ (there are uncountably many). Notices Amer. Math. Soc.15 (1968), 547.Google Scholar
  5. [5]
    Ebbinghaus, H.-D.: The Ehrenfeucht-Mostowski theorem forL Q. Notices Amer. Math. Soc. 17 (1970), 837.Google Scholar
  6. [6]
    Ehrenfeucht, A., Mostowski, A.: Models of axiomatic theories admitting automorphisms. Fund. Math.43 (1956), 50–68.Google Scholar
  7. [7]
    Fuhrken, G.: Skolem type normal forms for first order languages with a generalized quantifier. Fund. Math. 54 (1964), 291–302.Google Scholar
  8. [8]
    Fuhrken, G.: Languages with added quantifier “there exist at least ℵα”. In: The Theory of Models (Ed. by J. W. Addison, L. Henkin, A. Tarski), Amsterdam 1965, 121–131.Google Scholar
  9. [9]
    Fuhrken, G.: On the degree of compactness of the languagesQ α. Manuscript. University of Colorado and University of Minnesota 1970, 3 pp.Google Scholar
  10. [10]
    Gaifman, H.: Uniform extension operators for models and their applications. In: Sets, Models and Recursion Theory (Ed. by J. N. Crossley), Amsterdam 1967, 122–155.Google Scholar
  11. [11]
    Keisler, H. J.: Models with orderings. In: Logic, Methodology and Philosophy of Science III (Ed. by B. van Rootselaar and J. F. Staal), Amsterdam 1968, 35–62.Google Scholar
  12. [12]
    Keisler, H. J.: Logic with the quantifier “there exist uncountably many”. Annals Math. Logic1 (1970), 1–93.Google Scholar
  13. [13]
    Kueker, D. W.: Definability, automorphisms and infinitary languages. In: The Syntax and Semantics of Infinitary Languages (Ed. by J. Barwise), Berlin-Heidelberg-New York 1968, 152–165.Google Scholar
  14. [14]
    Morley, M.: Omitting classes of elements. In: The Theory of Models (Ed. by J. W. Addison, L. Henkin, A. Tarski), Amsterdam 1965, 265–273.Google Scholar
  15. [15]
    Morley, M.: Partitions and Models. In: Proceedings of the Summer School in Logic, Leeds 1967 (Ed. by M. H. Löb), Berlin-Heidelberg-New York 1968, 109–158.Google Scholar
  16. [16]
    Morley, M., Vaught, R.: Homogeneous universal models. Math. Scand.11 (1962), 37–57.Google Scholar
  17. [17]
    Mostowski, A.: On a generalization of quantifiers. Fund. Math.44 (1957), 12–36.Google Scholar
  18. [18]
    Omarov, A. I.: On reduced direct products. (Russian) Algebra i Logika6 (1967), 77–89.Google Scholar
  19. [19]
    Shelah, S.: Two cardinal compactness. Israel J. Math.9 (1971), 193–198.Google Scholar
  20. [20]
    Slomson, A. B.: Some problems in mathematical logic. Thesis. Oxford 1967.Google Scholar
  21. [21]
    Taimanov, A. D.: Remarks to Mostowski-Ehrenfeucht theorem. (Russian) Algebra i Logika6 (1967), 101–103.Google Scholar
  22. [22]
    Vaught, R.: The completeness of logic with the added quantifier “there are uncountably many”. Fund. Math. 54 (1964), 303–304.Google Scholar
  23. [23]
    Vaught, R.: A Löwenheim-Skolem theorem for cardinals far apart. In: The Theory of Models (Ed. by J. W. Addison, L. Henkia, A. Tarski), Amsterdam 1965, 390–401.Google Scholar
  24. [24]
    Vaught, R.: The Löwenheim-Skolem theorem. In: Logic, Methodology and Philosophy of Science (Ed. by Y. Bar-Hillel), Amsterdam 1965, 81–89.Google Scholar

Copyright information

© Verlag W. Kohlhammer 1971

Authors and Affiliations

  • H. -D. Ebbinghaus
    • 1
  1. 1.Freiburg im Breisgau

Personalised recommendations