Netherlands Journal of Plant Pathology

, Volume 71, Issue 6, pp 157–166 | Cite as

Polyphenol oxidases and phenolics in relation to resistance against cucumber scab inCucumis Sativus I. Fungal and host polyphenol oxidases

Polyfenoloxydasen en fenolen en hun verband met resistentie tegen vruchtvuur in komkommers I. De polyfenoloxydasen van schimmel en gastheer

  • A. Fuchs


In culture filtrates ofCladosporium cucumerinum, the fungus causing cucumber scab, a constitutive, exocellular catechol oxidase was found; moreover, dihydroxy-phenylalanine and chlorogenic acid oxidases were produced. Catechol oxidase was detected in noticeable activity as soon as the pH of the culture medium had reached a value of 6.0, or if the medium was adjusted to this pH before sterilizing. The Michaelis constantKm of the fungal catechol oxidase was 62.5×10−3 M. In very young non-inoculated green and etiolated cucumber seedlings no catechol oxidase activity was found. In scab diseased seedlings of the susceptible variety ‘Lange Gele Tros’ high polyphenol oxidase activities were recorded. In seedlings of the resistant variety ‘Vios’ polyphenol oxidase was also produced upon inoculation, although in much lower activities. In both instances, the Michaelis constant proved to be 15.6×10−3 M. This difference in Michaelis constants of catechol oxidases of fungal culture filtrates and of diseased seedlings suggests, that the polyphenol oxidase activity in the diseased plant is of plant origin; however, the presence of the fungus seems to elicit its synthesis or its activation.


Een onderzoek werd ingesteld naar het voorkomen van polyfenoloxydasen in relatie tot resistentie tegen en vatbaarheid voor vruchtvuur in komkommers. Daartoe werden de activiteiten van dit enzymsysteem (waarbij catecholoxydase als voorbeeld werd gekozen) van een vatbaar ras, ‘Lange Gele Tros’, en een resistent ras, ‘Vios’, met elkaar vergeleken, zowel in gezonde als in metCladosporium cucumerinum geïnoculeerde zaailingen. Ook in cultuurfiltraten van de schimmel werd de polyfenoloxydase-activiteit bepaald.

In cultuurfiltraten van de schimmel werd een constitutieve exocellulaire catecholoxydase gevonden; bovendien werden dihydroxy-fenylalanine en chlorogeenzuuroxydasen gevormd. Catecholoxydase werd alleen in aanzienlijke hoeveelheden geproduceerd indien de pH van het cultuurmedium tot 6.0 was gestegen, of indien de pH van te voren op 6.0 werd gebracht. De Michaelis-constanteKm van de schimmelcatecholoxydase bleek 62.5×10−3 M te zijn.

In zeer jonge, niet-geïnoculeerde “groene” en geëtioleerde zaailingen werd geen catecholoxydase-activiteit gevonden. Hoge polyfenoloxydase-activiteiten werden daarentegen gemeten in geïnoculeerde zaailingen van het vatbare ras, mits deze — na het oogsten — bevroren werden. Ook in zaailingen van het resistente ras werd na inoculatie polyfenoloxydase gevormd, hoewel met een veel geringere activiteit. In beide gevallen bleek de Michaelis-constante 15.6×10−3 M te zijn. Dit verschil in Michaelis-constanten van de schimmelcatecholoxydase en van die geproduceerd in geïnoculeerde zaailingen suggereert, dat de polyfenoloxydase in het laatste geval niet van de schimmel stamt, doch dat infectie met de schimmel de plant induceert totde novo-produktie van dit enzym, of wel tot activering van een latente polyfenoloxydase.

De betekenis van deze verhoogde polyfenoloxydase-activiteit na infectie voor de gastheer-parasiet-combinatie kan pas begrepen worden na een onderzoek naar het voorkomen van polyfenoloxydase-substraten in de gastheer.


Chlorogenic Acid Culture Filtrate Polyphenol Oxidase Alleen Polyphenol Oxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brauns, F. E. &D. A. Brauns, — 1960. The Chemistry of Lignin. Supplement Volume, Chapter XXVI: 659–736. Academic Press, New York and London.Google Scholar
  2. Brown, S. A., — 1961. Chemistry of lignification. Science, N.Y. 134: 305–313.Google Scholar
  3. Deverall, B. J. &R. K. S. Wood, — 1961. Chocolate spot of beans (Vicia faba L.) — Interactions between phenolase of host and pectic enzymes of the pathogen. Ann. appl. Biol. 49: 473–487.Google Scholar
  4. Farkas, G. L., — 1965. Soluble oxidative systems in the diseased plant. Abstr. Inaug. J. C. Walker Conf. in Plant Path., Madison, U.S.A.Google Scholar
  5. Farkas, G. L., L. Dészi, M. Horváth, K. Kisbán &J. Udvardy, — 1963/64. Common pattern of enzymatic changes in detached leaves and tissues attacked by parasites. Phytopath. Z. 49: 343–354.Google Scholar
  6. Farkas, G. L. &Z. Király, — 1958. Enzymological aspects of plant diseases I. Oxidative enzymes. Phytopath. Z. 31: 251–272.Google Scholar
  7. Farkas, G. L. &Z. Király, — 1962. Role of phenolic compounds in the physiology of plant diseases and disease resistance. Phytopath. Z. 44: 105–150.Google Scholar
  8. Freudenberg, K., — 1962. Forschungen am Lignin. Fortschr. Chem. org. NatStoffe 20: 41–72.Google Scholar
  9. Freudenberg, K., — 1965. Lignin, its constitution and formation from p-hydroxycinnamyl alcohols. Science, N.Y. 148: 595–600.Google Scholar
  10. Harpaz, I. &M. Klein, — 1964. Polyphenoloxidase activity in healthy maize plants and in those infected by the maize rough dwarf virus (MRDV). Experientia 20: 274–275.PubMedGoogle Scholar
  11. Hijwegen, T., — 1963. Lignification, a possible mechanism of active resistance against pathogens. Neth. J. Plant Path. 69: 314–317.Google Scholar
  12. Kaars Sijpesteijn, A. &C. W. Pluijgers, — 1962. On the action of phenylthioureas as systemic compounds against fungal diseases of plants. Meded. LandbHogesch. OpzoekStns Gent 27: 1199–1203.Google Scholar
  13. Kammen, A. van &D. Brouwer, — 1964. Increase of polyphenoloxidase activity by a local virus infection in uninoculated parts of leaves. Virology 22: 9–14.Google Scholar
  14. Lineweaver, H. &D. Burk, — 1934. The determination of enzyme dissociation constants. J. Am. chem. Soc. 56: 658–666.Google Scholar
  15. Matta, A. &A. E. Dimond, — 1963. Symptoms of Fusarium wilt in relation to quantity of fungus and enzyme activity in tomato stems. Phytopathology 53: 574–578.Google Scholar
  16. Opel, H., H. Wolfgang &H. Kegler, — 1961. Untersuchungen über den Stoffwechsel viruskranker Pflanzen II. Aktivitätsbestimmungen einiger Enzyme in Kotyledonen viruskranker Gurkenpflanzen. Phytopath. Z. 42: 62–72.Google Scholar
  17. Overeem, J., A. Fuchs & A. Kaars Sijpesteijn, — 1965. The formation of perylene quinones in etiolated cucumber seedlings infected with Cladosporium cucumerinum. Phytochemistry (in press.).Google Scholar
  18. Sanderson, G. W., — 1965. The action of polyphenolic compounds on enzymes. Biochem. J. 95: 24P-25P.Google Scholar
  19. Stahmann, M. A., — 1965. Influence of plant pathogens on host proteins and enzymes. Abstr. Inaug. J. C. Walker Conf. in Plant Path., Madison, U.S.A.Google Scholar
  20. Tomiyama, K. &M. A. Stahmann, — 1964. Alteration of oxidative enzymes in potato tuber tissue by infection with Phytophthora infestans. Pl. Physiol. 39: 483–490.Google Scholar
  21. Uritani, I., — 1963. The biochemical basis of disease resistance induced by infection. Perspectives of Biochemical Plant Pathology, Bull. Conn. agric. Exp. Stn 663: 4–19.Google Scholar
  22. Uritani, I., — 1965. Formation of enzymes concerning polyphenols in plant tissue in response to infection or cutting. Abstr. Inaug. J. C. Walker Conf. in Plant Path., Madison, U.S.A.Google Scholar
  23. Watkin, J. E., S. A. Brown &A. C. Neish, — 1960. Formation of phenolic compounds by plants. Chemy Can. 12: 29–32.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 1965

Authors and Affiliations

  • A. Fuchs
    • 1
  1. 1.Research Unit for Internal Therapy of PlantsT.N.O., Laboratory of PhytopathologyWageningenThe Netherlands

Personalised recommendations