Metabolic Brain Disease

, Volume 9, Issue 3, pp 183–209 | Cite as

Thiamine in excitable tissues: Reflections on a non-cofactor role

  • Lucien Bettendorff
Review Article

Key words

Thiamine Thiamine triphosphate chloride channels neurotransmission nerve conduction metabolism 



4,4′-diisothiocyanostilbene-2,2′-disulfonic acid


high-performance liquid chromatography


α-ketoglutarate dehydrogenase


pyruvate dehydrogenase


thiamine diphosphate


thiamine diphosphatase


thiamine monophosphate


thiamine monophosphatase


thiamine triphosphate


thiamine triphosphatase




voltage-dependent anion channel


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, P.R., and Brown, D.A. (1975). Actions of γ-aminobutyric acid on sympathetic ganglion cells.J. Physiol. 250:85–120.Google Scholar
  2. Aikawa, H., Watanabe, I.S., Furuse, T., Iwasaki, Y., Satoyoshi, E., Sumi, al. (1984). Low energy levels in thiamine deficient encephalopathy.J. Neuropathol. Exp. Neurol. 43:276–287.Google Scholar
  3. Armett, C.J., and Cooper, J.R. (1965). The role of thiamine in nervous tissue: effect of antimetabolites of the vitamin on conduction in mammalian nonmyelinated nerve fibers.J. Pharmacol. Exp. Ther. 148:137–143.Google Scholar
  4. Barchi, R.L., and Braun, P.E. (1971). Thiamine in neural membranes. A developmental approach.Brain Res. 35:622–624.Google Scholar
  5. Barchi, R.L., and Braun, P.E. (1972a). A membrane-associated thiamine triphosphatase from rat brain. Properties of the enzyme.J. Biol. Chem. 247:7668–7673.Google Scholar
  6. Barchi, R.L., and Braun, P.E. (1972b). Thiamine in neural membranes. Enzymatic hydrolysis of thiamine diphosphate.J. Neurochem. 19:1039–1048.Google Scholar
  7. Barchi, R.L., and Viale, R.O. (1976). Membrane-associated thiamine triphosphatase. II. Activation by divalent cations.J. Biol. Chem. 251: 193–197.Google Scholar
  8. Barchi, R.L. (1976). Membrane thiamine triphosphatase from rat brain: inhibition by ATP and ADP.J. Neurochem. 26:715–720.Google Scholar
  9. Barile, M., Passarella, S., and Quagliariello, E. (1990). Thiamine pyrophosphate uptake into isolated rat liver mitochondria.Arch. Biochem. Biophys. 280:352–357.Google Scholar
  10. Barker J.L., and Ransom, B.R. (1978). Amino acid pharmacology of mammalian central neurons grown in tissue culture.J. Physiol. 280:331–354.Google Scholar
  11. Bender, D.A. (1984). B vitamins in the nervous system.Neurochem. Internat. 6:297–321.Google Scholar
  12. Berman, K., Fishman, R.A. (1975). Thiamine phosphate metabolism and possible coenzyme-independent functions of thiamine in brain.J. Neurochem. 24:457–465.Google Scholar
  13. Bettendorff, L. (1991). Application of high-performance liquid chromatography to the study of thiamine metabolism and in particular thiamine triphosphatase.J. Chromatogr. 566:397–408.Google Scholar
  14. Bettendorff, L. (1994). The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cell.Biochim. Biophys. Acta 1222:7–14.Google Scholar
  15. Bettendorff, L., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1986). Determination of thiamine and its phosphate esters in human blood serum at femtomole levels.J. Chromatogr. 382:297–302.Google Scholar
  16. Bettendorff, L., Michel-Cahay, C., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1987). Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus.J. Neurochem. 49:495–502.Google Scholar
  17. Bettendorff, L., Wins, P., and Schoffeniels, E. (1988). Thiamine triphosphatase from Electrophorus electric organ is anion dependent and irreversibly inhibited by 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid.Biochem. Biophys. Res. Commun. 154:942–947.Google Scholar
  18. Bettendorff, L., Grandfils, C., Wins, P., and Schoffeniels, E. (1989a). Thiamine triphosphatase in the membranes of the main electric organ of Electrophorus electricus: substrate-enzyme interactions.J. Neurochem. 53:738–746.Google Scholar
  19. Bettendorff, L., Schoffeniels, E., Naquet, R., Silva-Barrat, C., Riche, D., and Ménini, C. (1989b). Phosphorylated thiamine derivatives and cortical activity in the baboon Papio papio: Effect of intermittent light stimulation.J. Neurochem. 53:80–87.Google Scholar
  20. Bettendorff, L., Weekers, L., Wins, P., and Schoffeniels, (1990a). Injection of sulbutiamine induces an increase in thiamine triphosphate in rat tissues.Biochem. Pharmacol. 40:2557–2560.Google Scholar
  21. Bettendorff, L., Wins, P., and Schoffeniels, E. (1990b). Regulation of ion uptake in membrane vesicles from rat brain by thiamine compounds.Biochem. Biophys. Res. Commun. 171:1137–1144.Google Scholar
  22. Bettendorff, L., Longrée, I., Wins, P., and Schoffeniels, E. (1991a). Solubilization of thiamine triphosphatase from the electric organ of Electrophorus electricus.Biochim. Biophys. Acta 1073:69–76.Google Scholar
  23. Bettendorff, L., Peeters, M., Jouan, C., Wins, P., and Schoffeniels, E. (1991). Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed phase high-performance liquid chromatographic method.Anal. Biochem. 198:52–59.Google Scholar
  24. Bettendorff, L., Hennuy, B., Wins, P., and Schoffeniels, E. (1993a). Thiamine and derivatives as modulators of rat brain chloride channels.Neurosci. 52:1009–1017.Google Scholar
  25. Bettendorff, L., Kolb, H.-A., and Schoffeniels, E. (1993b). Thiamine triphosphate activates an anion channel of large unit conductance in neuroblastoma cells.J. Membr. Biol. 136:281–288.Google Scholar
  26. Bettendorff, L., Peeters, M., Wins, P., and Schoffeniels, E. (1993c). Metabolism of thiamine triphosphate in rat brain: Correlation with chloride permeability.J. Neurochem. 60:423–434.Google Scholar
  27. Bettendorff, L., and Wins, P. (1994). Mechanism of thiamine transport in neuroblastoma cells. Inhibition of a high affinity carrier by sodium channel activators and dependence of thiamine uptake on membrane potential and intracellular ATP.J. Biol. Chem. 269:14379–14385.Google Scholar
  28. Bettendorff, L., Hennuy, B., De Clerck, A., and Wins, P. (1994a). Chloride permeability of rat brain membrane vesicles correlates with thiamine triphosphate content.Brain Res. (in press).Google Scholar
  29. Bettendorff, L., Wins, P., and Lesourd, M. (1994b). Subcellular localization and compartmentation of thiamine derivatives in rat brain.Biochim. Biophys. Acta 1222:1–6.Google Scholar
  30. Blass, J.P., Cederbaum, S.D., and Dunn, H.G. (1976). Biochemical abnormalities in Leigh's disease.Lancet 1:1237–1238.Google Scholar
  31. Blass, J.P., Piacentini, S., Boldizsar, E., and Baker, A. (1982). Kinetic studies of mouse brain transketolase.J. Neurochem. 39:729–733.Google Scholar
  32. Blatz, A.L., and Magleby, K.L. (1983). Single voltage-dependent chloride-sensitive channels of large conductance in cultured rat muscle.Biophys. J. 43:237–241.Google Scholar
  33. Bontemps, J., Philippe, P., Bettendorff, L., Lombet, J., Dandrifosse, G., and Schoffeniels, E. (1984). Determination of thiamine and thiamine phosphates in excitable tissues as thiochrome derivatives by reversed-phase high performance liquid chromatography on octadecyl)silica.J. Chromatogr. 307:283–294.Google Scholar
  34. Brown, R.D. (1982). Thiamin as a catalyst of chemiosmotic energy transductions.Ann. NY Acad. Sci. 378:442–448.Google Scholar
  35. Brunnekreeft, J.W.I., Eidhof, H., and Gerrits, J. (1989). Optimized determination of thiochrome derivatives of thiamine and thiamine phosphates in whole blood by reversed-phase liquid chromatography with precolumn derivatization.J. Chromatogr. 491:89–96.Google Scholar
  36. Bureau, M.H., Khrestchatisky, M., Heeren, M.A., Zambrowicz, E.B., Kim, H., Grisar, al. (1992). Isolation and cloning of a voltage-dependent anion channel-like Mr 36,000 polypeptide from mammalian brain.J. Biol. Chem. 267:8679–8684.Google Scholar
  37. Butterworth, R.F. (1982). Neurotransmitter function in thiamine-deficiency encephalopathy.Neurochem. Internat. 4:449–464.Google Scholar
  38. Butterworth, R.F. (1993). Pathophysiological mechanisms responsible for the reversible (thiamine-responsive) and irreversible (thiamine non-responsive) neurological symptoms of Wernicke's encephalopathy.Drug. Alcohol. Rev. 12:315–322.Google Scholar
  39. Castellano, B., Gonzales, B., and Palacios, G. (1989). Cytochemical demonstration of TDPase in myelinated fibers in the central and peripheral nervous system of the rat.Brain Res. 492:203–210.Google Scholar
  40. Catterall, W.A. (1992). Cellular and molecular biology of voltage-gated sodium channels.Physiol. Rev. 72:S15-S48.Google Scholar
  41. Claus, D., Eggers, R., Warecka, K., and Neundörfer, B. (1985). Thiamine deficiency and nervous system function disturbances.Eur. Arch. Psychiatr. Neurol. Sci. 234: 390–394.Google Scholar
  42. Colombini, M.J. (1989). Voltage gating in the mitochondrial channel, VDAC.J. Membr. Biol. 111:103–108.Google Scholar
  43. Cooper, J.R., Itokawa, Y., and Pincus, J.H. (1969). Thiamine triphosphate deficiency in subacute necrotizing encephalomyelopathy.Science 164:74–75.Google Scholar
  44. Cooper, J.R., and Pincus, J.H. (1979). The role of thiamine in the nervous tissue.Neurochem. Res. 4:223–239.Google Scholar
  45. Cooper, J.R., Roth, R.H., and Kini, M.M. (1963). Biochemical and physiological function of thiamine in nervous tissue.Nature 199:609–610.Google Scholar
  46. De Caro, L.G. Jr. (1962). Vitesse de conduction et contenu en thiamine (cocarboxylase) du nerf.Electroencephalogr. Clin. Neurophysiol. 14 (suppl. 22):26–29.Google Scholar
  47. De Caro, L., Rindi, G., and de Giuseppe, L. (1961). Contents in rat tissue of thiamine and its phosphate during dietary thiamine deficiency.Int. Rev. Vit. Res. 31:333–340.Google Scholar
  48. Dermietzel, R., Hwang, T.-K., Buettner, R., Hofer, A., Dotzler, E., Kremer, al. (1994). Cloning andin situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes.Proc. Natl. Acad. Sci. USA 91:499–503.Google Scholar
  49. DeVivo, D.C., Haymond, M.W., Obert, K.A., Nelson, J.S., Pagliare, A.S. (1979). Defective activation of the pyruvate dehydrogenase complex in subacute necrotizing encephalopathy (Leigh disease).Ann. Neurol. 6:483–494.Google Scholar
  50. Doerge, D.R., McNamee, M.G., and Ingraham, L.L. (1982). Some neurochemical properties of thiamin.Ann. NY Acad. Sci. 378:422–434.Google Scholar
  51. Dreyfus, P.M. (1959). The quantitative histochemical distribution of thiamine in normal rat brain.J. Neurochem. 4:183–190.Google Scholar
  52. Dreyfus, P.M. (1961). The quantitative histochemical distribution of thiamine in deficient rat brain.J. Neurochem. 8:139–145.Google Scholar
  53. Eckert, T., and Möbus, W. (1964). Über eine ATP:Thiamindiphosphat-Phosphotranferase Aktivität im Nervengewebe.Z. Physiol. Chem. 338:286–288.Google Scholar
  54. Eder, L., and Dunant, Y. (1980). Thiamine and cholinergic transmission in the electric organ of Torpedo I. Cellular localization and functional changes of thiamine and thiamine phosphate esters.J. Neurochem. 35:1278–1286.Google Scholar
  55. Eder, L., Hirt, L., and Dunant, Y. (1976). Possible involvement of thiamine in acetylcholine release.Nature 264:186–188.Google Scholar
  56. Eder, L., Dunant, Y., and Loctin, F. (1980). Thiamine and cholinergic transmission in the electric organ of Torpedo II. Effects of exogenous thiamine and analogues on acetylcholine release.J. Neurochem. 35:1287–1296.Google Scholar
  57. Egi, Y., Koyama, S., Shikata, H., Yamada, K., and Kawasaki, T. (1986). Content of thiamin phosphate esters in mammalian tissues.-An extremely high concentration of thiamine triphosphate in pig skeletal muscle.Biochem. Int. 12:385–390.Google Scholar
  58. Eichenbaum, J.W., and Cooper, J.R. (1971). Restoration by thiamine of the action potential in ultraviolet irradiated nerves.Brain Res. 32:258–260.Google Scholar
  59. Eijkman, C. (1897). Eine Beriberiähnliche Krankheit der Hühner.Virchows Arch. Pathol. Anat. 148:523.Google Scholar
  60. Enomoto, K.-I., and Edwards, C. (1985). Thiamine blockade of neuromuscular transmission.Brain Res. 358:316–323.Google Scholar
  61. Esquibel, M.A., Alonso, I., Meyer, H., and Oliveira Castro, G., and de Chagas, C. (1971). Quelques aspects de l'histogenèse et de l'ontogenèse des organes electriques chez l'Electrophorus electricus.L.C.R. Acad. Sci. (Paris) 273:196–199.Google Scholar
  62. Falke, L.C., and Misler, S. (1989). Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells.Proc. Nat. Acad. Sci. USA 86:3919–3923.Google Scholar
  63. Filippov, P.P., Shestakowa, I.K., Tikhomirova, N.K., and Kochetov, G.A. (1979). Properties of pig liver transketolase.Biokhimiya 44:521–528.Google Scholar
  64. Fournier, J. (1988). Thiamine. Propriétés acido-basiques (partie 1).Bull. Soc. Chim. France 5:854–861.Google Scholar
  65. Fox, J.M. (1972). Does thiamine restore excitability of peripheral nerves blocked by ultraviolet radiation.Brain Res. 44:271–272.Google Scholar
  66. Fox, J.M., and Duppel, W. (1975). The action of thiamine and its di-and triphosphates on the slow exponential decline of the ionic currents in the node of Ranvier.Brain Res. 89:287–302.Google Scholar
  67. Funk, C. (1911). On the chemical nature of the substance which cures polyneuritis in birds induced by a diet of polished rice.J. Physiol. (London) 43:395–400.Google Scholar
  68. Gaitonde, M.K., and Evans, G.M. (1983). Metabolism of thiamin in rat brainin vivo.Biochem. Soc. Trans. 11:695–696.Google Scholar
  69. Gaitonde, M.K., Evison, E., and Evans, G.M. (1983). The rate of utilization of glucose via hexosemonophosphate shunt in brain.J. Neurochem. 41:1253–1260.Google Scholar
  70. Gale, J.M., and Brosemer, R.W. (1984). Effect of pyrithiamine treatment on potassium ion fluxes in rat cortical slices.Biochim. Biophys. Acta 773:125–131.Google Scholar
  71. Galzigna, L. (1969). The synaptolytic effect of thiamine related to its interaction with neurotransmitter.Biochem. Pharmacol. 18:2485–2493.Google Scholar
  72. Gibson, G.E., Ksiezak-Reding, H., Sheu, K.R., Mykytyn, V., and Blass, J.P. (1984). Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal.Neurochem. Res. 9:803–814.Google Scholar
  73. Gibson, G., Nielsen, P., Mykytyn, V. Carlson, K., and Blass, J. (1989). Regionally selective alterations in enzymatic activities and metabolic fluxes during thiamine deficiency.Neurochem. Res. 14:17–24.Google Scholar
  74. Goldberg, D.J., Begenisich, T.B., and Cooper, J.R. (1975). Effects of thiamine antagonists on nerve conduction. II. Voltage clamp experiments with antimetabolites.J. Neurobiol. 6:453–462.Google Scholar
  75. Goldberg, D.J., and Cooper, J.R. (1975). Effects of thiamine antagonists on nerve conduction. I. Actions of antimetabolites and fern extract on propagated action potentials.J. Neurobiol. 6:435–452.Google Scholar
  76. Gounaris, A.D., and Schulman, M. (1980). Formation of a thiamine artifact during chromatography: a single column procedure for the separation of thiamine and the thiamine mono-, di-, and triphosphate esters.Anal. Biochem. 102:145–149.Google Scholar
  77. Gray, P.T.A., Bevan, S., and Ritchie, J.M. (1984). High conductance anion-selective channels in rat cultured Schwann cells.Proc. R. Soc. Lond. B 221:395–409.Google Scholar
  78. Greenwood, J., Love, E.R., and Pratt, O.E. (1982). Kinetics of thiamine transport across the blood-brain barrier in the rat.J. Physiol. 327:095–103.Google Scholar
  79. Greenwood, J., Luthert, P.J., and Pratt, O.E., and Lantos, P.L. (1986). Transport of thiamine across the blood-brain barrier of the rat in the absence of aerobic metabolism.Brain Res. 399:148–151.Google Scholar
  80. Greiling, H., and Kiesow, L. (1958). Zur Biochemie der Thiamintriphosphorsäure IV. Mitt.: Das Vorkommen von Thiamintriphosphat im tierischen Organismus.Z. Naturforschg. 13b:251–252.Google Scholar
  81. Gurtner, H.P. (1961). Aneurin und Nervenerregung Versuche mit32S-markiertem Aneurin und Aneurinantimetaboliten.Helv. Physiol. Acta Suppl.XI:1–47.Google Scholar
  82. Haas, R.H. (1988). Thiamine and the brain.Ann. Rev. Nutr. 8:483–515.Google Scholar
  83. Hakim A.M. (1984). The induction and reversibility of cerebral acidosis in thiamine deficiency.Ann. Neurol. 16:673–679.Google Scholar
  84. Hakim, A.M., and Pappius, H.M. (1983). Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency.Ann. Neurol. 13:365–375.Google Scholar
  85. Hanover, J.A. (1992). The nuclear pore: at the crossroads.FASEB J. 6:2288–2295.Google Scholar
  86. Harris, R.A., and Allan, A.M. (1985). Functional coupling of γ-aminobutyric acid receptors to chloride channels in brain membranes.Science 228: 1108–1110.Google Scholar
  87. Hashitani, Y., and Cooper, J.R. (1972). The partial purification of thiamine triphosphatase from rat brain.J. Biol. Chem. 247:2117–2119.Google Scholar
  88. Hazell, A.S., Butterworth, R.F., and Hakim, A.M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentrations in experimental thiamine deficiency.J. Neurochem. 61:1155–1158.Google Scholar
  89. Herve, C., Beyne, P., and Delacoux, E. (1994). Determination of thiamine and its phosphate esters in human erythrocytes by high-performance liquid chromatography with isocratic elution.J. Chromatogr. B 653:217–220.Google Scholar
  90. Itokawa, Y., and Cooper, J.R. (1968). The enzymatic synthesis of triphosphothiamine.Biochim. Biophys. Acta 158:180–182.Google Scholar
  91. Itokawa, Y., and Cooper, J.R. (1969a). On a relationship between ion transport and thiamine in nervous tissue.Biochem. Pharmacol. 18:545–547.Google Scholar
  92. Itokawa, Y., and Cooper, J.R. (1969b). Thiamine release from nerve membranes by tetrodotoxin.Science 166:759–761.Google Scholar
  93. Itokawa Y., and Cooper J.R. (1970a). Ion movements and thiamine in nervous tissue - I. Intact nerve preparations.Biochem. Pharmacol. 19:985–992.Google Scholar
  94. Itokawa, Y., and Cooper, J.R. (1970b). Ion movements and thiamine - II. The release of the vitamin from membrane fragments.Biochim. Biophys. Acta 196:274–284.Google Scholar
  95. Itokawa, Y., Kimura, M., and Nishino, K. (1982). Thiamin-binding proteins.Ann. NY. Acad. Sci. 378: 327–336.Google Scholar
  96. Itokawa, Y., Schulz R.A., and Cooper J.R. (1972). Thiamine in nerve membranes.Biochim. Biophys. Acta 266:293–299.Google Scholar
  97. Iwata, H., Matsuda, T., and Tonomura, H. (1988). Improved high-performance liquid chromatographic determination of thiamine and its phosphate esters in animal tissues.J. Chromatogr. 450:317–323.Google Scholar
  98. Iwata, H., Yabushita, Y., Doi, T., and Matsuda, T. (1985). Synthesis of thiamine triphosphate in rat brain in vivo.Neurochem. Res. 10:779–787.Google Scholar
  99. Jackson, P.S., and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux.Am. J. Physiol. 265:C1489-C1500.Google Scholar
  100. Jansen, B.C.P., and Donath, W.F. (1926). On the isolation of antiberiberi vitamin.Proc. Kon. Ned. Akad. Wet. 29:1390.Google Scholar
  101. Johnson, L.R., and Gubler, C.J. (1969). Studies on the physiological functions of thiamine III. The phosphorylation of thiamine in brain.Biochim. Biophys. Acta 156:85–96.Google Scholar
  102. Kawasaki, T. (1992). Vitamin B1: Thiamine. InModern Chromatographic of Analysis of Vitamins, pp 575 (De Leenheer, A.P., Lambert, W.E., Nelis, H.J., eds); Marcel Dekker, Inc, New York.Google Scholar
  103. Keynes, R.D. (1963). Chloride in the squid axon.J. Physiol. (London) 169:690–705.Google Scholar
  104. Kiessling, K.-H. (1953). Thiamine triphosphate in Baker's yeast.Nature 172:1187–1188.Google Scholar
  105. Kimelberg, H.K. (1981). Active accumulation and exchange transport of chloride in astroglial cells in culture.Biochim. Biophys. Acta 646:179–184.Google Scholar
  106. Kimura, M., Fujita, T., and Itokawa, Y. (1982). Liquid-chromatographic determination of the total thiamine content of blood.Clin. Chem. 28:29–31.Google Scholar
  107. Kimura, M., and Itokawa, J. (1985). Determination of thiamine and its phosphate esters in human and rat blood by high-performance liquid chromatography with post-column derivatization.J. Chromatogr. 332:181–188.Google Scholar
  108. Kirk, K., Ellory, J.C., and Young, J.D. (1992). Transport of organic substrates via a volume-activated channel.J. Biol. Chem. 267:23475–23478.Google Scholar
  109. Knyihar-Csillik, E., Bezzegh, A., Böti, S., and Csillik, B. (1986). Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons.J. Histochem. Cytochem. 34:363–371.Google Scholar
  110. Koike, H., Wada, T., and Minakami, H. (1967). Quantitative separation of triphosphothiamine in biological materials and its formation from S35-thiamine in rat liver.J. Biochem. 62:492–494.Google Scholar
  111. Kolb, H.A., Brown, C.D.A., and Murer, H. (1985). Identification of a voltage-dependent anion channel in the apical membrane of a Cl—secretory epithelium (MDCK).Pflügers Arch. 403:262–265.Google Scholar
  112. Kunz, H.A. (1956). Über die Wirkung von Antimetaboliten des Aneurins auf die einzelne markhaltige Nervenfaser.Helv. Physiol. Acta 14:411–423.Google Scholar
  113. Laforenza, U., Mazzarello, P., Patrini, C., Poloni, M., Casadei, G.P., and Rindi, G. (1990a). Different distribution of thiaminpyrophosphatase activity in neuronal and glial cell enriched fractions from human and rat brain: an isoelectric focusing investigation.Bas. Appl. Histochem. 34:111–117.Google Scholar
  114. Laforenza, U., Patrini, C., Mazzarello, P., Poloni, M., and Rindi G. (1990b). Thiamine, thiamine phosphates and thiamine metabolizing enzymes in synaptosomes of rat brain.Bas. Appl. Histochem. 34:249–258.Google Scholar
  115. Laforenza, U., Patrini, C., and Rindi, G. (1988). Distribution of thiamine, thiamine phosphates, and thiamine metabolizing enzymes in neuronal and glial cell enriched fractions of rat brain.J. Neurochem. 51:730–735.Google Scholar
  116. Langlais, P.J., and Mair, R.G. (1990). Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain.J. Neurosci. 10:1664–1674.Google Scholar
  117. Lohmann, K., and Schuster, P. (1937). Untersuchungen über die Cocarboxylase.Biochem. Z. 294:188.Google Scholar
  118. Makarchikevich, A.F., and Chernikevich, I.P. (1992). Purification and characterization of thiamine triphosphatase from bovine brain.Biochim. Biophys. Acta 1117:326–332.Google Scholar
  119. Mastrogiacomo, F., Bergeron, C., and Kish, S.J. (1993). Brain α-ketoglutarate dehydrogenase complex activity in Alzheimer's disease.J. Neurochem. 61:2007–2014.Google Scholar
  120. Matsuda, T., and Cooper, J.R. (1981). Thiamine as an integral component of brain synaptosomal membranes.Proc. Natl. Acad. Sci. USA 78:5886–5889.Google Scholar
  121. Matsuda, T., and Cooper, J.R. (1983). Inhibition of neuronal sodium and potassium ion activated adenosinetriphosphatase by pyrithiamine.Biochemistry 22:2209–2213.Google Scholar
  122. Matsuda, T., Iwata, H., and Cooper, J.R. (1984). Specific inactivation of a α(+) molecular form of (Na++K+)-ATPAse by pyrithiamin.J. Biol. Chem. 259:3858–3863.Google Scholar
  123. Matsuda, T., Iwata, H., and Cooper, J.R. (1985a). Involvement of sulfhydryl groups in the inhibition of brain (Na++K+)-ATPase by pyrithiamin.Biochim. Biophys. Acta 817:17–24.Google Scholar
  124. Matsuda, T., Yabushita, Y., Doi, T., and Iwata, H. (1985b). Regional distribution of thiamin pyrophosphokinase in rat brain.Experientia 41:924–925.Google Scholar
  125. Matsuda, T., Doi, T., Tonomura, H., Baba, A., and Iwata, H. (1989a). Postynatal development of thiamine metabolism in rat brain.J. Neurochem. 52:842–846.Google Scholar
  126. Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1989b). Tissue difference in cellular localization of thiamine phosphate esters.Comp. Biochem. Physiol. 94B:405–409.Google Scholar
  127. Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1989c). Difference in thiamine metabolism between extensor digitorum longus and soleus muscles.Comp. Biochem. Physiol. 94B:399–403.Google Scholar
  128. Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1991a). Postnatal development of thiamine metabolism in rat skeletal muscle.Int. J. Biochem. 23:203–206.Google Scholar
  129. Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1991b). Membrane-associated thiamine triphosphatase in rat skeletal muscle.Int. J. Biochem. 23:1111–1114.Google Scholar
  130. McCandless, D.W., and Schenker, S. (1968). Encephalopathy of thiamine deficiency: studies of intracerebral mechanisms.J. Clin. Invest. 47:2268–2280.Google Scholar
  131. McGill, J.M., Basuvappa, S., and Fitz, J.G. (1992). Characterization of high-conductance anion channels in rat bile duct epithelial cells.Am. J. Physiol. 262:G703-G710.Google Scholar
  132. McLane, J.A., Khan, T., and Held, I.R. (1987). Increased axonal transport in peripheral nerves of thiamine-deficient rats.Exp. Neurol. 95:482–491.Google Scholar
  133. Minz, B. (1938). Sur la libération de la vitamine B1 par le tronc isolé du nerf pneumogastrique soumis à l'excitation électrique.C.R. Soc. Biol. (Paris) 127:1251–1253.Google Scholar
  134. Miyoshi, K., Egi, Y., Shioda, T., and Kawasaki, T. (1990). Evidence for in vivo synthesis of thiamine triphosphate by cytosolic adenylate kinase in chicken skeletal muscle.J. Biochem. 108:267–270.Google Scholar
  135. Murphy, J.V. (1976). Neurochemical changes in Leigh's disease.J. Nutr. Sci. Vitaminol. 22 (Suppl.):69–73.Google Scholar
  136. Nachmansohn, D., and Steinbach, H.B. (1942). Localization of enzymes in nerves I. Succinic dehydrogenase and vitamin B1.J. Neurophysiol. 5: 109–120.Google Scholar
  137. Nishino, K., Itokawa, Y., Nishino, N., Piros, K., and Cooper, J.R. (1983). Enzyme system involved in the synthesis of thiamine triphosphate. I. Purification and characterization of protein-bound thiamine diphosphate: ATP phosphoryltransferase.J. Biol. Chem. 258:11871–11878.Google Scholar
  138. Novikoff, A.B. and Goldfischer, S. (1961). Nucleosidediphosphatase activity in the Golgi apparatus and its usefulness for cytological studies.Proc. Natl. Acad. Sci. USA 47:802–810.Google Scholar
  139. Ogawa, K., and Sakai, M. (1982). Recent findings on ultracytochemistry of thiamin phosphatases.Ann. NY Acad. Sci. 378:188–214.Google Scholar
  140. Page, M.G., Ankoma-Sey, V., Coulson, W.F., and Bender, D.A. (1989). Brain glutamate and γ-aminobutyrate (GABA) metabolism in thiamin-deficient rats.Brit. J. Nutr. 62:245–253.Google Scholar
  141. Patrini, C., Reggiani, C., Laforenza, U., and Rindi, G. (1988). Blood-brain transport of thiamine monophosphate in the rat: A kinetic study in vivo.J. Neurochem. 50:90–93.Google Scholar
  142. Penttinen, K.K., and Uotila, L. (1981). The relation of the soluble thiamine triphosphatase activity of various rat tissues to nonspecific phosphatases.Medical Biol. 59:177–184.Google Scholar
  143. Perri, V., Sacchi, O., and Casella, C. (1970a). Nervous transmission in the superior cervical ganglion of the thiamine deficient rat.Q. J. Exp. Physiol. 55:25–35.Google Scholar
  144. Perri, V., Sacchi, O., and Casella, C. (1970b). Action of oxythiamine and pyrithiamine on the isolated rat superior cervical ganglion.Q. J. Exp. Physiol. 55:36–43.Google Scholar
  145. Peter, J.B., Barnard, R.J., Edgerton, V.R., Gillespie, C.A., and Stempel, K.E. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits.Biochem. 11:2627–2633.Google Scholar
  146. Peters, R.A. (1936). The biochemical lesion in vitamin B1 deficiency. Application of modern biochemical analysis in its diagnosis.Lancet 1:1161–1164.Google Scholar
  147. Peterson, J.W., Gubler, C.J., and Kuby, S.A. (1975). Partial purification and properties of thiamine pyrophosphokinase from pig brain.Biochim. Biophys. Acta 397:377–394.Google Scholar
  148. Petropulos, S.F. (1960). The action of an antimetabolite of thiamine on single myelinated nerve fibers.J. Cell. Comp. Physiol. 56:7–13.Google Scholar
  149. Pincus, J.H., and Grove, I. (1970). Distribution of thiamine phosphate esters in normal and thiamine deficient brain.Exp. Neurol. 28:477–483.Google Scholar
  150. Pincus, J.H., Solitaire, G.B., and Cooper, J.R. (1976). Thiamine triphosphate levels and histopathology. Correlation in Leigh's Disease.Arch. Neurol. 33:759–763.Google Scholar
  151. Postoenko, V.A., Parkhomenko, Y.M., Vovk, A.I., Khalmuradov, A.G., and Donchenko, G.V. (1987). Isolation and certain properties of the thiamin-binding protein of rat brain synaptosomes.Biokhimiya 52:1792–1797.Google Scholar
  152. Rao, V.L.R., Richardson, J.S., and Butterworth, R.F. (1993). Decreased activities of thiamine diphosphatase in frontal and temporal cortex in Alzheimer's disease.Brain Res. 631:334–336.Google Scholar
  153. Rindi, G. (1989). Alcohol and thiamine of the brain.Alcohol and Alcoholism 24:493–495.Google Scholar
  154. Rindi, G., and de Giuseppe, L. (1961). A new chromatographic method for the determination of thiamine and its mono-, di- and tri-phosphates in animal tissues.Biochem. J. 78:602–606.Google Scholar
  155. Rindi, G., de Giuseppe, L., and Ventura, V. (1963). Distribution and phosphorylation of oxythiamine.J. Nutr. 81:147–154.Google Scholar
  156. Rindi, G., Patrini, C., Cominciolo, V., and Reggiani, C. (1980). Thiamine content and turnover rates of some rat nervous regions, using labeled thiamine as a tracer.Brain Res. 181:369–380.Google Scholar
  157. Rindi, G., Comincioli, V., Reggiani, C., and Patrini, C. (1984). Nervous tissue thiamine metabolism in vivo. II. Thiamine and its phosphoester dynamics in different brain regions and sciatic nerve of the rat.Brain Res. 293:329–342.Google Scholar
  158. Rodgers, E.F. (1970). Thiamine antagonists. In McCormick, D.B. and Wright, L.D. (eds). Vitamins and Coenzymes. Meth. Enzymol. 18A. Academic Press, New York, pp. 245–258.Google Scholar
  159. Romanenko, A.V. (1990). A new way of muscle activity regulation: thiamine participation in neuromuscular transmission.Muscle and Motility 2:151–153.Google Scholar
  160. Rossi-Fanelli, A., Siliprandi, N., and Fasella, P. (1952). On the presence of triphosphothiamine (TPT) in the liver.Science 116:711–713.Google Scholar
  161. Roth, J., and Berger, E.G. (1982). Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae.J. Cell. Biol. 92:223–229.Google Scholar
  162. Royer-Morrot, M.J., Zhiri, A., Paille, F., and Royer, R.J. (1992). Plasma thiamine concentrations after intramuscular and oral multiple dosage regimens in healthy men.Eur. J. Clin. Pharmacol. 42:219–222.Google Scholar
  163. Ruenwongsa, P., and Cooper, J.R. (1977). The role of bound thiamine pyrophosphate in the synthesis of thiamine triphosphate in rat liver.Biochim. Biophys. Acta 482:64–70.Google Scholar
  164. Sano, S., Matsuda, Y., Miyamoto, S., and Nakagawa, H. (1984). Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain.Biochem. Biophys. Res. Commun. 118:292–298.Google Scholar
  165. Sano, S., Matsuda, Y., and Nakagawa, H. (1988). Type B nucleoside-diphosphatase of rat brain. Purification and properties of an enzyme with high thiamine pyrophosphatase activity.Eur. J. Biochem. 171:231–236.Google Scholar
  166. Schrijver, J., Dias, T., and Hommes, F.A. (1978). Studies on ATP. Thiamine diphosphate phosphotransferase activity in rat brain.Neurochem. Res. 3:699–709.Google Scholar
  167. Schoffeniels, E., Dandrifosse, G., and Bettendorff, L. (1984). Phosphate derivatives of thiamine and Na+ channel in conducting membrane.J. Neurochem. 43:269–271.Google Scholar
  168. Schwartz, J.P., Lust, W.D., Shirazawa, R., and Passonneau, J.V. (1975). Glycolytic metabolism in cultured cells of the nervous system III. The effects of thiamine deficiency and pyrithiamine on the C-6 glioma and C-100 neuroblastoma cell lines.Mol. Cell. Biochem. 9:73–78.Google Scholar
  169. Schwartz, R.D., Skolnick, P., and Hollingsworth, E.B., and Paul, S.M. (1984). Barbiturate and picrotoxin-sensitive chloride efflux in rat cerebral cortical synaptoneurosomes.FEBS Lett. 175:193–196.Google Scholar
  170. Schwarze, W., and Kolb, H.-A. (1984). Voltage-dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes.Pflügers Arch. 402:281–291.Google Scholar
  171. Sharma, S.K., and Quastel, J.H. (1965). Transport and metabolism of thiamine in rat brain cortex in vitro.Biochem. J. 94:790–800.Google Scholar
  172. Shetty, K.T., and Veeranna (1991). Thiamine pyrophosphatase in brain. Partial purification, regional distribution and ontogeny.Neurochem. Int. 19:33–37.Google Scholar
  173. Shikata, H., Egi, Y., Koyama, S., Yamada, K., and Kawasaki, T. (1989a). Properties of the thiamin triphosphate-synthesizing activity catalyzed by adenylate kinase (isoenzyme 1).Biochem. Internat. 18:943–949.Google Scholar
  174. Shikata, H., Koyama, S., Egi, Y., Yamada, K., and Kawasaki, T. (1989b). Cytosolic adenylate kinase catalyzes the synthesis of thiamin triphosphate from thiamine diphosphate.Biochem. Internat. 18:933–941.Google Scholar
  175. Shioda, T., and Kawasaki, T. (1992). Thiamin triphosphate does not affect contraction of skinned fibers.J. Nutr. Sci. Vitaminol. 38:529–533.Google Scholar
  176. Simchowitz, L., and De Weer, P. (1986). Chloride movements in human neutrophils. Diffusion, exchange and active transport.J. Gen. Physiol. 88:167–194.Google Scholar
  177. Sjöstrand, F. (1946). Cytological localization of riboflavin (vitamin B6) and thiamine (vitamin B1) by fluorescence microspectroscopy.Nature 157:698.Google Scholar
  178. Smidt, L.J., Cremin, F.M., Grivetti, L.E., and Clifford, A.J. (1991). Influence of thiamin supplementation on the health and general well-being of an elderly irish population with marginal thiamin deficiency.J. Gerontol. 46:M16-M22.Google Scholar
  179. Sorbi, S., and Blass, J.P. (1982). Abnormal activation of pyruvate dehydrogenase in Leigh disease fibroblasts.Neurology 32:555–558.Google Scholar
  180. Spector, R. (1976). Thiamine transport in the central nervous system.Am. J. Physiol. 230:1101–1107.Google Scholar
  181. Tallaksen C.M.E., Bøhmer, T., Bell, H., and Karlsen J. (1991). Concomitant determination of thiamin and its phosphate esters in human blood and serum by high performance liquid chromatography.J. Chromatogr. 564:127–136.Google Scholar
  182. Tanaka, C., and Cooper, J.R. (1968). The fluorescent microscopic localization of thiamine in nervous tissue.J. Histochem. Cytochem. 16:362–365.Google Scholar
  183. Tanaka, C., Itokawa Y., and Tanaka S. (1973). The axoplasmic transport of thiamine in rat sciatic nerve.J. Histochem. Cytochem. 21:81–86.Google Scholar
  184. Thornber, E.J., Dunlop, R.H., and Gawthorne, J.M. (1980). Thiamin deficiency in the lamb: changes in thiamin phosphate esters in the brain.J. Neurochem. 35:713–717.Google Scholar
  185. Troconso, J.C., Johnston, M.V., Hess, K.M., Griffin, J.W., and Price, D.L. (1981). Model of Wernicke's encephalopathy.Arch. Neurol. 38:350–354.Google Scholar
  186. Venosa P.A. (1979). Ionic movements across the plasma membrane of skeletal muscle fibers. InMembrane Transport in Biology vol. II (Giebisch, G., Tosteson, D.C., and Ussing H.H., eds). Springer Verlag Berlin.Google Scholar
  187. Von Muralt, A. (1942). Über den Nachweis von Aktionssubstanzen der Nervenerregung.Pflügers Arch. 245:604–632.Google Scholar
  188. Von Muralt, A. (1947). Thiamine and Peripheral Neurophysiology. InVitamins and Hormones vol 5 (Harris, R.S., and Thimann, K.V., eds) pp 93–118. Academic Press, New York.Google Scholar
  189. Von Muralt, A. and Zemp, J. (1943). Über die Freisetzung von Aneurin bei der Nervenerregung.Pflügers Arch. 246:746–748.Google Scholar
  190. Voskoboev, A.I., and Chernikevich, I.P. (1985). Biosynthesis of thiamine triphosphate and identification of thiamine diphosphate-binding proteins of rat liver hyaloplasm.Biokhimiya 50:1421–1427.Google Scholar
  191. Waldenlind, L. (1977). Release of thiamine and formation of a methylthiamine-like substance in the phrenic nerve-diaphragm preparation of the rat.Acta Physiol. Scand. 101:22–27.Google Scholar
  192. Waldenlind, L. (1979). Possible role of thiamine in neuromuscular transmission.Acta Physiol. Scand. 105:1–10.Google Scholar
  193. Waldenlind, L., Elfman, L., and Rydqvist, B. (1978). Binding of thiamine to nicotinic acetylcholine receptor in Torpedo marmorata and the frog end plate.Acta Physiol. Scand. 103:154–159.Google Scholar
  194. Weber, W., and Kewitz, H. (1985). Determination of thiamine in human plasma and its pharmacocinetics.Eur. J. Clin. Pharmacol. 28:213–219.Google Scholar
  195. Wielders, J.P.M., and Mink, C.J.K. (1983). Quantitative analysis of total thiamine in human blood, milk and cerebrospinal fluid by reversed-phase ion-pair high-performance liquid chromatography.J. Chromatogr. 277:145–156.Google Scholar
  196. Woolley, D.W. (1953). Biosynthesis and energy transport by enzymic reduction of “onium” salts.Nature 171:323–328.Google Scholar
  197. Yamashita, H., Zhang, Y., and Nakamura, S. (1993). The effects of thiamin and its phosphate esters on dopamine release in the rat striatum.Neurosc. Lett. 158:229–231.Google Scholar
  198. Yamazaki, M., and Hayaishi, O. (1968). Allosteric properties of nucleoside diphosphatase and its identity with thiamine pyrophosphatase.J. Biol. Chem. 243:2934–2942.Google Scholar
  199. Yusa, T. (1962). Studies in thiamine triphosphate II. Thiamine triphosphate as phosphate donor.Plant Cell. Physiol. 3:95–103.A0431001 00003 CS-SPJRNPDF [HEADSUP]Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Lucien Bettendorff
    • 1
  1. 1.Laboratory of NeurochemistryUniversity of LiègeLiègeBelgium

Personalised recommendations