, Volume 39, Issue 11, pp 1236–1246 | Cite as

Detoxification of pesticides by microbial enzymes

  • L. M. Johnson
  • H. W. TalbotJr


Enzyme Microbial Enzyme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamson, J., and Inch, T. D., Possible relationships between structure and mechanism of degradation of organophosphorous insecticides in the soil environment. Proc. 7th Br. Insecticide Fungicide Conf.1 (1973) 15–33.Google Scholar
  2. 2.
    Audus, L. J., Herbicide behavior in the soil, in: The Physiology and Biochemistry of Herbicides. Ed. L. J. Audus. Academic Press, New York 1964.Google Scholar
  3. 3.
    Barik, S., and Munnecke, D. M., Enzymatic hydrolysis of concentration diazinon in soil. Bull. environ. Contam. Toxic.29 (1982) 235–239.Google Scholar
  4. 4.
    Barik, S., Munnecke, D. M., and Fletcher, J. S., Enzymatic hydrolysis of malathion and other dithioate pesticides. Biotechnol. Lett.4 (1982) 795–798.Google Scholar
  5. 5.
    Barik, S. and Sethunathan, N., Biological hydrolysis of parathion in natural ecosystems. J. environ. Qual.7 (1978) 346–348.Google Scholar
  6. 6.
    Barik, S. and Sethunathan, N., Metabolism of nitrophenols in flooded soils. J. environ. Qual.7 (1978) 349–352.Google Scholar
  7. 7.
    Barik, S., Siddaramappa, R., and Sethunathan, N., Metabolism of nitrophenols by bacteria isolated from parathionamended soil. J. Microbiol. Serol.42 (1976) 461–470.Google Scholar
  8. 8.
    Bartha, R., and Pramer, D., The metabolism of acylanilide herbicides. Adv. appl. Microbiol.13 (1970) 317–341.Google Scholar
  9. 9.
    Bollag, J.-M., Briggs, G. G., Dawson, J. E., and Alexander, M., 2,4-D metabolism: Enzymatic degradation of chlorocatechols. J. agric. Fd Chem.16 (1968) 829–833.Google Scholar
  10. 10.
    Bollag, J.-M., Helling, C. S., and Alexander, M., 2,4-D metabolism: Enzymatic hydroxylation of chlorinated phenols. J. agric. Fd Chem.16 (1968) 826–828.Google Scholar
  11. 11.
    Bollag, J.-M., Helling, C. S., and Alexander, M., Metabolism of 4-chloro-2-methyl-phenoxyacetic acid by soil bacteria. Appl. Microbiol.15 (1967) 1393–1398.Google Scholar
  12. 12.
    Blake, J., and Kaufman, D. D., Characterization of acyanilidehydrolyzing enzyme(s) fromFusarium oxysporum Schlecht. Pest. Biochem. Physiol.5 (1975) 305–313.Google Scholar
  13. 13.
    Brown, K. A., Phosphotriesterases ofFlavobacterium sp. Soil Biol. Biochem.12 (1980) 105–112.Google Scholar
  14. 14.
    Christensen, H. E., Registry of toxic effects of chemical substances. Ed. U.S. Department Health, Education and Welfare, National Institute for Occupational Safety and Health, 1245 pp. Rockville, Maryland 1976.Google Scholar
  15. 15.
    Domsch, K. H., Fischer, H. F., and Munnecke, D. M., Mikrobielle bzw. enzymatische Spaltung von Parathion, in: Final report of the Bundesministerium für Forschung und Technologie, p. 54 BMFT, Bonn 1979.Google Scholar
  16. 16.
    Engelhardt, G., Wallnöfer, P. R., and Plapp, R., Degradation of linuron and some other herbicides and fungicides by a linuron-inducible enzyme obtained fromBacillus sphaericus. Appl. Microbiol.22 (1971) 284–288.PubMedGoogle Scholar
  17. 17.
    Engelhardt, G., Wallnöfer, P. R., and Plapp, R., Identification of N,O-dimethylhydroxylamine as a microbial degradation production of the herbicide, linuron. Appl. Microbiol.23 (1972) 664–666.PubMedGoogle Scholar
  18. 18.
    Engelhardt, G., Wallnöfer, P. R., and Plapp, R., Purification and porperties of any aryl acylamidase ofBacillus sphaericus, catalyzing the hydrolysis of various phenylamide herbicides and fungicides. Appl. Microbiol.26 (1973) 709–718.PubMedGoogle Scholar
  19. 19.
    Eto, M., Organophosphorous pesticides, in: Organic and Biological Chemistry, pp. 386–399 CRC Press, Boca Raton, Florida 1974.Google Scholar
  20. 20.
    Geissbühler, H., Haselbach, C., Aebi, H., and Ebner, L., The fate of N-(4-chlorophenoxy)-phenyl-N,N-dimethylurea (C-1983) in soils and plants. III. Breakdown in soils and plants. Weed Res.3 (1963) 277–297.Google Scholar
  21. 21.
    Geissbühler, H., Martin, H., and Voss, G., The substituted ureas, in: Herbicides-Chemistry, Degradation and Mode of Action, vol. 1, 2nd edn, p. 209 Eds P. C. Kearney and D. D. Kaufman. Marcel Dekker, New York 1973.Google Scholar
  22. 22.
    Getzin, L. W., and Rosefield, I., Organophosphorous insecticides degradation by heat-labile substances in soil. J. agric. Fd Chem.16 (1968) 598–601.Google Scholar
  23. 23.
    Getzin, L. W., and Rosefield, I., Partial purification and properties of a soil enzyme that degrades the insecticide malathion. Biochim. biophys. Acta235 (1971) 442–453.PubMedGoogle Scholar
  24. 24.
    Goldman, P., Milne, G. W. A., and Keister, D. B., Carbonhalogen bond cleavage. III. Studies on bacterial halidohydrolases. J. biol. Chem.243 (1968) 428–434.PubMedGoogle Scholar
  25. 25.
    Gundersen, K., and Jensen, H. L., A soil bacterium decomposing organic nitro-compounds. Acta agric. scand.6 (1956) 100–114.Google Scholar
  26. 26.
    Hemmett, R. B., Jr, and Faust, S. D., Biodegradation kinetics of 2,4-dichlorophenoxyacetic acid by aquatic microorganisms. Residue Rev.29 (1969) 191–207.PubMedGoogle Scholar
  27. 27.
    Janke, D., and Fritsche, W., Deohlorierung von 4-chlorophenol nach extradioler Ringspaltung durchPseudomonas putida. Z. allg. Mikrobiol.19 (1979) 139–141.PubMedGoogle Scholar
  28. 28.
    Jensen, H. L., and Lautrup-Larsen, G., Microorganisms that decompose nitroaromatic compounds, with special reference to dintiroorthocresol. Acta agric. scand.17 (1967) 115–126.Google Scholar
  29. 29.
    Kaufman, D. D., Degradation of pesticides by soil microorganisms, in: Pesticides in Soil and Water, pp. 133–156. Ed. W.D. Guenzi. Soil Science Society of America Madison, Wisconsin, 1974.Google Scholar
  30. 30.
    Kaufman, D. D., and Kearney, P. C., Microbial transformations in the soil, in: Herbicides-Physiology, Biochemistry, Ecology, vol. 2, pp. 29–64. Ed. L. J. Audus. Academic Press, New York 1976.Google Scholar
  31. 31.
    Kearney, P. C., Purification and properties of an enzyme responsible for hydrolyzing phenylcarbamates. J. agric. Fd Chem.113 (1965) 561–564.Google Scholar
  32. 32.
    Kearney, P. C., and Kaufman, D. D., Enzyme from soil bacterium hydrolyzes phenylcarbamate herbicides. Science147 (1965) 740–741.Google Scholar
  33. 33.
    Lanzilotta, R. P., and Pramer, D., Herbicide transformation. I. Studies with whole cells ofFusarium solani. Appl. Microbiol.19 (1970) 301–306.PubMedGoogle Scholar
  34. 34.
    Lanzilotta, R. P., and Pramer, D., Herbicide transformation. II. Studies with an acylamidase ofFusarium solani. Appl. Microbiol.19 (1970) 307–313.PubMedGoogle Scholar
  35. 35.
    Laveglia, J., and Dahm, P.A., Degradation of organophosphorous and carbamate insecticides in the soil and by microorganisms. A. Rev. Ent.22 (1977) 483–513.Google Scholar
  36. 36.
    Lichtenstein, E. P., Fuhremann, T. W., and Schulz, K. R., Effect of sterilizing agents in persistence of parathion and diazinon in soil and water. J. agric. Fd Chem.16 (1968) 870–873.Google Scholar
  37. 37.
    Loos, M. A., Phenoxyalkanoic acids, in: Herbicides-Chemistry, Degradation, and Mode of Action, vol. 1, 2nd ed., pp. 1–128. Eds P. C. Kearney and D. D. Kaufman. Marcel Dekker, New York 1975.Google Scholar
  38. 38.
    Loos, M. A., Bollag, J.-M., and Alexander, M., Phenoxyacetate herbicide detoxification by bacterial enzymes. J. agric. Fd Chem.15 (1967) 858–860.Google Scholar
  39. 39.
    Matsumura, F., and Bousch, G. M., Malathion degradation byTrichoderma viride and aPseudomonas species. Science153 (1966) 1278–1280.PubMedGoogle Scholar
  40. 40.
    Mostafa, I. Y., Bahig, M. R. E., Fakhr, I. M. I., and Adam, Y., Metabolism of organophosphorous insecticides. XIV. Malathion breakdown by soil fungi. Z. Naturforsch.27B (1972) 1115–1116.Google Scholar
  41. 41.
    Mostafa, I. Y., Fakhr, I. M. I., Bahig, M. R. E., and El-Zawahry, Y. A., Metabolism of organophosphorous insecticides. XIII. Degradation of malathion byRhizobium sp. Archs Microbiol.86 (1972) 221–224.Google Scholar
  42. 42.
    Mounter, L. A., Baxter, R. F., and Chanutin, A., Dialkylfuorophosphatases of microorganisms. J. biol. Chem.215 (1955) 699–711.PubMedGoogle Scholar
  43. 43.
    Munnecke, D. M., Chemical, physical and biological methods for the disposal and detoxification of pesticides. Residue Rev.70 (1979) 1–26.PubMedGoogle Scholar
  44. 44.
    Munnecke, D. M., Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl. environ. Microbiol.32 (1976) 7–13.PubMedGoogle Scholar
  45. 45.
    Munnecke, D. M., Hydrolysis of organophosphate insecticides by an immobilized-enzyme system. Biotechnol. Bioengng21 (1979) 2247–2261.Google Scholar
  46. 46.
    Munnecke, D. M., Enzymatic detoxification of waste organophosphate pesticides. J. agric. Fd Chem.28 (1980) 105–111.Google Scholar
  47. 47.
    Munnecke, D. M., Day, H. R., and Trask, H. W., Review of pesticide disposal research, No. SW 527, U.S. Environmental Protection Agency Publication, 76p. Cincinnatti, Ohio, 1976.Google Scholar
  48. 48.
    Munnecke, D. M., and Hsieh, D. P. H., Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl. Microbiol.28 (1974) 212–217.PubMedGoogle Scholar
  49. 49.
    Murry, C., Senate panel probes kepone disaster, Chem. Engng News54 (1976) 17.Google Scholar
  50. 50.
    O'Sullivan, D., Strong growth ahead for industrial enzymes. Chem. Engng News59 (1981) 37.Google Scholar
  51. 51.
    Ottinger, R. S., and Blumenthal, J. L., Recommended methods of reduction, neutralization, recovery or disposal of hazardous waste. V. Pesticides and cyanides, EPA report NTIS, PB-224-579, p. 144. Environmental Protection Agency, Springfield, Virginia, 1974.Google Scholar
  52. 52.
    Paris, D. F., and Lewis, D. L., chemical and microbial degradation of ten selected pesticides in aquatic systems. Residue Rev.45 (1973) 95–124.PubMedGoogle Scholar
  53. 53.
    Rosenberg, A., and Alexander, M., Microbial cleavage of various organophosphorous insecticides. Appl. environ. Microbiol.37 (1979) 886–891.PubMedGoogle Scholar
  54. 54.
    Sethunathan, N., Siddaramappa, R., Rajaram, K. P., Barik, S., and Wahid, P. A., Parathion: Residues in soil and water. Residue Rev.68 (1977) 91–122.PubMedGoogle Scholar
  55. 55.
    Sethunathan, N., and Yoshida, T., AFlavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol.19 (1973) 873–875.PubMedGoogle Scholar
  56. 56.
    Sharabi, N., El Din, and Bordeleau, L. M., Biochemical decomposition of the herbicide N-(3,4-dichlorophenyl)-2-methylpentanimide and related compounds. Appl. Microbiol.18 (1969) 369–375.PubMedGoogle Scholar
  57. 57.
    Still, G. G., and Herrett, R. A., Methylcarbamates, carbanilates, and acylanilides, in: Herbicides-Chemistry, Degradation and Mode of Action, vol. 2, 2nd edn, pp. 609–624. Eds P. C. Kearney and D. D. Kaufman. Marcel Dekker. New York 1976.Google Scholar
  58. 58.
    Talbot, H. W., Johnson, L., Barik, S., and Williams, D., Properties of aPseudomonas sp. derived parathion hydrolase immobilized to porous glass and activated alumina. Biotechnol. Lett.4 (1982) 209–214.Google Scholar
  59. 59.
    Storck, W. J., Pesticide profits belie mature market status. Chem. Engng News58 (1980) 10.Google Scholar
  60. 60.
    Tiedje, J. M. and Alexander, M., Enzymatic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. J. agric. Fd Chem.17 (1969) 1080–1084.Google Scholar
  61. 61.
    Tu, C. M., and Miles, J. R. W., Interactions between pesticides and soil microbes. Residue Rev.64 (1976) 17–65.PubMedGoogle Scholar
  62. 62.
    Tweedy, B. G., Loeppky, C., and Ross, J. A., Metabolism of 3-(p-bromophenyl)-1-methoxy-1-methylurea. J. agric Fd Chem.18 (1970) 851–853.Google Scholar
  63. 63.
    Wallnöfer, P., The decomposition of urea herbicides byBacillus sphaericus, isolated from soil. Weed Res.9 (1969) 333–339.Google Scholar
  64. 64.
    Wallnöfer, P. R., and Bader, J., Degradation of urea herbicides by cell-free extracts ofbacillus sphaericus. Appl. Microbiol.19 (1970) 714–717.PubMedGoogle Scholar
  65. 65.
    Zech, R., and Wigand, K. D., Organophosphate-detoxifying enzymes inE. coli. Gel filtration and isoelectric focussing of DFPase, paraoxonase and unspecific phosphohydrolases. Experientia31 (1975) 157–158.PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag 1983

Authors and Affiliations

  • L. M. Johnson
    • 1
    • 2
  • H. W. TalbotJr
    • 1
    • 2
  1. 1.Polybac CorporationAllentownUSA
  2. 2.Department of Botany and MicrobiologyUniversity of OklahomaNormanUSA

Personalised recommendations