Advertisement

Journal of Insect Behavior

, Volume 7, Issue 1, pp 101–117 | Cite as

Host-parasite relationships in six species ofSphecodes bees and their halictid hosts: Nest intrusion, intranidal behavior, and Dufour's gland volatiles (Hymenoptera: Halictidae)

  • M. Sick
  • M. Ayasse
  • J. Tengö
  • W. Engels
  • G. Lübke
  • W. Francke
Article

Abstract

Nest invasion behavior was studied in six kleptoparasiticSphecodes species at four nesting sites of their respective social and solitary hosts.Sphecodes females preferred to enter unguarded nests. Nest intruding strategies observed in the differentSphecodes species did not depend on whether host species were solitary or social, as long as the nesting cycle of a social host was in the solitary stage (i.e., a single host female). Observation of intranidal behavior revealed thatSphecodes monilicornis females kill all host individuals within an usurped nest. They stay in the nest for several hours, laying eggs in adequately provisioned brood cells. Gas chromatography-mass spectrometry analyses of Dufour's gland secretions revealed species-specific compositions. Qualitative comparisons of whole patterns and quantitative comparisons considering the predominant hydrocarbons common to both host and parasite contradict the hypothesis of chemical mimetism, a mechanism supposed to permit parasite intrusion by qualitatively similar odor bouquets in host and parasite females.

Key words

kleptoparasitism intranidal behavior invasion behavior Dufour's gland secretions Halictidae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, B., and Rozen, J. G., Jr. (1987). Ovaries, ovarioles, and oocytes in parasitic bees (Hymenoptera: Apoidea).Pan-Pacif. Entomol. 63: 155–164.Google Scholar
  2. Ayasse, M. (1991).Chemische Kommunikation bei der primitiv eusozialen Furchenbiene Lasioglossum malachurum (Halictidae): Ontogenese kastenspezifischer Duftstoffbouquets, Paarungsbiologie und Nesterkennung, Doctoral thesis, University of Tübingen, Germany.Google Scholar
  3. Ayasse, M., Leys, R., Pamilo, P., and Tengö, J. (1990). Kinship in communally nestingAndrena (Hymenoptera: Andrenidae) bees is indicated by composition of Dufour's gland secretions.Biochem. Syst. Ecol. 18: 453–460.Google Scholar
  4. Ayasse, M., Engels, W., Hefetz, A., Tengö, J., Lübke, G., and Francke, W. (1993). Ontogenetic patterns of volatiles identified in Dufour's gland extracts from queens and workers of the primitively eusocial halictine bee,Lasioglossum malachurum (Hymenoptera: Halictidae).Insect. Soc. 40: 1–18.Google Scholar
  5. Batra, S. W. T. (1968). Behavior of some social and solitary halictine bees within their nests: A comparative study (Hymenoptera: Halictidae).J. Kans. Entomol. Soc. 41: 120–133.Google Scholar
  6. Bell, W. J., Breed, M. D., Richards, K. W., and Michener, C. D. (1974). Social, stimulatory and motivational factors involved in intraspecific nest defense of a primitively eusocial halictine bee,J. Comp. Physiol. 93: 173–181.Google Scholar
  7. Bohart, G. E. (1970).The Evolution of Parasitism Among Bees, Utah State University Press, Logan.Google Scholar
  8. Davies, N. B., Bourke, A. F. G., and Brooke, M. D. L. (1989). Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race.Trends Ecol. Evol. 4: 274–278.Google Scholar
  9. Duffield, R. M., Fernandes, A., Lamb, C., Wheeler, J. W., and Eickwort, G. C. (1981). Macrocyclic lactones and isopentenyl esters in the Dufour's gland secretion of halictine bees.J. Chem. Ecol. 7: 319–331.Google Scholar
  10. Eickwort, G. C., and Abrams, J. (1980). Parasitism of sweat bees in the genusAgapostemon by cuckoo bees in the genusNomada (Hymenoptera: Halictidae, Anthophoridae).Pan-Pacif. Entomol. 56: 144–152.Google Scholar
  11. Eickwort, G. C., and Eickwort, K. R. (1972). Aspects of the biology of Costa Rican Halictine bees. III.Sphecodes kathleenae, a social kleptoparasite ofDialictus umbripennis (Hymenoptera: Halictidae).J. Kans. Entomol. Soc. 45: 529–541.Google Scholar
  12. Felsenstein, J. (1986).PHYLIP (Phylogeny Interference Package, Version 2.9).Google Scholar
  13. Field, J. (1992). Intraspecific parasitism as an alternative reproductive tactic in nest-building wasps and bees.Biol. Rev. 67: 79–126.Google Scholar
  14. Fisher, R. M. (1984). Evolution and host specificity: A study of the invasion success of a specialized bumble bee social parasite.Can. J. Zool. 62: 1641–1644.Google Scholar
  15. Hefetz, A., Bergström, G., and Tengö, J. (1986). Species, individual and kin specific blends in Dufour's gland secretions of halictine bees—chemical evidence.J. Chem. Ecol. 12: 197–208.Google Scholar
  16. Heide, A. v. D. (1992). Zur Bionomie vonLasioglossum (Evylaeus) fratellum (Pérez), einer Furchenbiene mit ungewöhnlich langlebigen Weibchen (Hymenoptera, Halictinae).Drosera '92(2): 89–206.Google Scholar
  17. Johansson, I., Svensson, B. G., Tengö, J., and Bergström, G. (1982). Systematic relationship of halictine bees based on the pattern of macrocyclic lactones in the Dufour gland secretion.Insect Biochem. 12: 161–170.Google Scholar
  18. Knerer, G. (1969). Stones, cement and guards in halictine nest architecture and defense.Entomol. News 80: 141–147.Google Scholar
  19. Knerer, G. (1973). Periodizität und Strategie der Schmarotzer einer sozialen Schmalbiene,Evylaeus malachurus (K.) (Apoidea: Halictidae).Zool. Anz. 190: 41–63.Google Scholar
  20. Knerer, G. (1980). Biologie und Sozialverhalten von Bienenarten der GattungHalictus Latreille (Hymenoptera: Halictidae).Zool. Jb. Syst. 107: 511–536.Google Scholar
  21. Knerer, G., and Atwood, C. E. (1967). Parasitization of social halictine bees in southern Ontario.Proc. Entomol. Soc. Ontario 97: 103–110.Google Scholar
  22. Knerer, G., and Plateaux-Quénu, C. (1967). Usurpation des nids etrangers et parasitisme facultatif chezHalictus scabiosae (Rossi).Insectes Soc. 14: 47–50.Google Scholar
  23. Kronenberg, S., and Hefetz, A. (1984). Role of labial glands in nesting behaviour ofChalicodoma sicula (Hymenoptera; Megachilidae).Physiol. Entomol. 9: 175–179.Google Scholar
  24. Legewie, H. (1925). Zum Problem des tierischen Parasitismus I. Teil: Die Lebensweise der SchmarotzerbieneSphecodes monilicornis K. (=subquadratus SM.) (Hym.: Apidae).Z. Morph. Ökol. Tiere 4: 430–464.Google Scholar
  25. Michener, C. D. (1978). The parasitic groups of Halictidae (Hymenoptera, Apoidea).Univ. Kans. Sci. Bull. 51: 291–339.Google Scholar
  26. Michener, C. D., and Brothers, D. J. (1971). A simplified observation nest for burrowing bees.J. Kans. Entomol. Soc. 44: 236–239.Google Scholar
  27. Ordway, E. (1964).Sphecodes pimpinellae and other enemies ofAugochlorella.J. Kans. Entomol. Soc. 37: 139–152.Google Scholar
  28. Packer, L. (1986). The biology of a subtropical population ofHalictus ligatus. 4. A cuckoo-like caste.J. N. Y. Entomol. Soc. 94: 458–466.Google Scholar
  29. Prestwich, G. D., and Collins, M. S. (1981). Macrocyclic lactones as the defense substances of the termite genusArmitermes.Tetrahedron Lett. 22: 4587–4590.Google Scholar
  30. Sick, M., Ayasse, M., Tengö, J., Lübke, G., and Francke, W. (1991). Spielen Duftstoffe eine Rolle bei der Fortpflanzung von Kuckucksibienen der GattungSphecodes (Hymenoptera: Halictidae)?Verh. Dtsch. Zool. Ges. 84: 393.Google Scholar
  31. Tengö, J., and Baur, B. (1993). Fecundity in the kleptoparasitic beeNomada lathburiana (Anthophoridae): Number and size of oocytes in relation to body size and time of day.Entomol. Gen. 8: 19–24.Google Scholar
  32. Tengö, J., and Bergström, G. (1976). Odor correspondence betweenMelitta females and males of their nest parasiteNomada flavopicta K. (Hymenoptera: Apoidea).J. Chem. Ecol. 2: 57–65.Google Scholar
  33. Tengö, J., and Bergström, G. (1977). Cleptoparasitism and odor mimetism in bees: DoNomada males imitate the odor ofAndrena females?Science 196: 1117–1119.Google Scholar
  34. Tengö, J., Sick, M., Ayasse, M., Engels, W., Svensson, B. G., Lübke, G., and Francke, W. (1992). Species specificity of Dufour's gland morphology and volatile secretions in kleptoparasiticSphecodes bees (Hymenoptera: Halictidae).Biochem. Syst. Ecol. 20: 351–362.Google Scholar
  35. Torchio, P. F. (1989). Biology, immature development, and adaptive behavior ofStelis montana, a cleptoparasite ofOsmia (Hymenoptera: Megachilidae).Ann. Entomol. Soc. Am. 82: 616–632.Google Scholar
  36. Torchio, P. F., and Burdick D. J. (1988). Comparative notes on the biology and development ofEpeolus compactus Cresson, a cleptoparasite ofColletes kincaidii Cockerell (Hymenoptera, Anthrophoridae, Colletidae).Ann. Entomol. Soc. Am. 81: 626–636.Google Scholar
  37. Wcislo, W. T. (1987). The roles of seasonality, host synchronicity, and behaviour in the evolution and distributions of nest parasites in Hymenoptera (Insecta) with special reference to bees.Biol. Rev. 62: 515–543.Google Scholar
  38. Wcislo, W. T. (1989). Behavioral environments and evolutionary change.Annu. Rev. Ecol. Syst. 20: 137–169.Google Scholar
  39. Wheeler, W. M. (1919). The parasitic Aculeata, a study in evolution.Proc. Am. Philos. Soc. 58: 1–40.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • M. Sick
    • 1
  • M. Ayasse
    • 2
  • J. Tengö
    • 3
  • W. Engels
    • 1
  • G. Lübke
    • 4
  • W. Francke
    • 4
  1. 1.LS Entwicklungsphysiologie, Zoologisches InstitutUniversität TübingenTübingenBRD
  2. 2.Abt. Evolutionsbiologie, Zoologisches InstitutUniversität WienWienÖsterreich
  3. 3.Ecological Research Station of Uppsala UniversityFärjestadenSweden
  4. 4.Institut Organische Chemie und BiochemieUniversität HamburgHamburg 13BRD

Personalised recommendations