Skip to main content
Log in

Anatomy of the paranode-node-paranode region in the cat

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Berthold, C.-H., Ultrastructure of the node-paranode region of mature feline ventral lumbar spinal root fibers. Acta Soc. Med. upsal.73 (1968) suppl. 9, 37–70.

    Google Scholar 

  2. Berthold, C.-H., Ultrastructure of postnatally developing peripheral nodes of Ranvier. Acta Soc. Med. upsal.73 (1968) 145–168.

    CAS  PubMed  Google Scholar 

  3. Berthold, C.-H., Morphology of normal peripheral axons; in: Physiology and pathobiology of axons, pp. 3–64. Ed. S.G. Waxman. Raven Press, New York 1978.

    Google Scholar 

  4. Berthold, C.-H., Some aspects on the ultrastructural organization of peripheral myelinated axons in the cat; in: Proc. Life Sciences; Axoplasmic transport, pp. 40–54. Ed. D.G. Weiss. Springer. Berlin/Heidelberg/New York 1982.

    Google Scholar 

  5. Berthold, C.-H., and Rydmark, M., Electron microscopic serial section analysis of nodes of Ranvier in lumbosacral spinal root of the cat: ultrastructural organization of nodal compartments in fibers of different sizes. J. Neurocyt.12 (1983) 475–505.

    Article  CAS  Google Scholar 

  6. Berthold, C.-H., and Rydmark, M., Electron microscopic serial section analysis of nodes of Ranvier in lumbosacral spinal roots of the cat: paranodal Schwann cell mitochondria. In manuscript.

  7. Berthold, C.-H., Corneliuson, O., and Rydmark, M., Changes in shape and size of cat spinal root myelinated nerve fibers during fixation and Vestopal-W embedding for electron microscopy. J. Ultrastr. Res.80 (1982) 23–41.

    Article  CAS  Google Scholar 

  8. Berthold, C.-H., Rydmark, M., and Corneliuson, O., Estimation of sectioning compression and thickness of ultrathin sections through Vestopal-W embedded cat spinal roots. J. Ultrastr. Res.80 (1982) 42–52.

    Article  CAS  Google Scholar 

  9. Chiu, S.Y., Asymmetry currents in the mammalian myelinated nerve. J. Physiol.309 (1980) 499–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coppin, C.M.L., and Jack, J.J.B., Internodal length and conduction velocity of cat muscle afferent nerve fibers. J. Physiol.222 (1972) 91P-93P.

    Google Scholar 

  11. Cullheim, S., Relations between cell body size, axon diameter and axon conduction velocity of cat α-motoneurons stained with horseradish peroxidase. Neurosci. Let.8 (1978) 17–20.

    Article  CAS  Google Scholar 

  12. Cullheim, S., and Kellerth, J.-O., A morphological study of the axons and recurrent axon collaterals of cata-motoneurones supplying different functional types of muscle unit. J. Physiol.281 (1978) 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ellisman, M.H., Friedman, P.L., and Hamilton, W.J., The localization of sodium and calcium to Schwann cell paranodal loops at nodes of Ranvier and calcium to compact myelin. J. Neurocyt.9 (1980) 185–205.

    Article  CAS  Google Scholar 

  14. Erlanger, J., and Blair, E.A., Comparative observation of motor and sensory fibers with special reference to the repetitiousness. Am. J. Physiol.121 (1938) 431–453.

    Article  Google Scholar 

  15. Ghabriel, M.N., and Allt, G., The node of Ranvier; in: Progress in anatomy, vol. 2, pp. 137–160. Eds R.J. Harrison and V. Navaratnam. Cambridge University Press, Cambridge 1982.

    Google Scholar 

  16. Hall, S.M., and Wiliams, P.L., The distribution of electrondense tracers in peripheral nerve fibers. J. cell Sci.8 (1971) 541–555.

    Article  CAS  PubMed  Google Scholar 

  17. Hirano, A., and Dembitzer, H.M., Morphology of normal central myelinated axons; in: Physiology and pathobiology of axons, pp. 65–82. Ed. S.G. Waxman. Raven Press, New York 1978.

    Google Scholar 

  18. Landon, D.N., Structure of normal peripheral myelinated nerve fibers; in: Advances in neurology, vol. 31. Demyelinating diseases, Basic and clinical electrophysiology, pp. 25–49. Eds S.G. Waxman and J.M. Ritchie. Raven Press, New York 1981.

    Google Scholar 

  19. Landon, D.N., and Hall, S., The myelinated nerve fiber; in: The peripheral nerve, pp. 1–105. Ed. D.N. Landon. Chapman and Hall, London 1976.

    Google Scholar 

  20. Langley, O.K., Histochemistry of polyanions in peripheral nerve; in: Complex Carbohydrates of Nervous Tissue, pp. 193–207. Eds R.U. Margolis and R.K. Margolis. Plenum Press, New York and London 1979.

    Chapter  Google Scholar 

  21. Livingstone, R.B., Pfenninger, K., Moor, H., and Akert, K., Specialized paranodal and interparanodal glial-axonal in the peripheral and the central nervous system: a freeze-etching study. Brain Res.58 (1973) 1–24.

    Article  Google Scholar 

  22. Loud, A.V., A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. cell Biol.37 (1968) 27–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neumcke, B., and Stämpfli, R., Sodium currents and sodium-current fluctuations in rat myelinated nerve fibers. J. Physiol.329 (1982) 163–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neumcke, B., Schwarz, W., and Stämpfli, R., Differences between K channels in motor and sensory nerve fibers of the frog as revealed by fluctuation analysis. Pflügers Arch.387 (1980) 9–16.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenbluth, J., Freeze-fracture approaches to ionophore localization in normal and myelin-deficient nerves; in: Advances in neurology, vol. 31, Demyelinating diseases, Basic and clinical electrophysiology, pp. 391–418. Eds S.G. Waxman and J.M. Ritchie. Raven Press, New York 1981.

    Google Scholar 

  26. Rydmark, M., Nodal axon diameter correlates linearly with internodal axon diameter in spinal roots of the cat. Neurosci. Lett.24 (1981) 247–250.

    Article  CAS  PubMed  Google Scholar 

  27. Rydmark, M., and Berthold, C.-H., Electron microscopic serial section analysis of nodes of Ranvier in lumbar spinal roots of the cat: a morphometric study of nodal compartments in fibers of different sizes. J. Neurocytol.12 (1983) 537–565.

    Article  CAS  PubMed  Google Scholar 

  28. Schnapp, B., and Mugnaini, E., Membrane architecture of myelinated fibers as seen by freeze-fracture; in: Physiology and pathobiology of axons, pp. 83–123. Ed. S.G. Waxman. Raven Press, New York 1978.

    Google Scholar 

  29. Seneviratne, K.N., Peiris, O.A., and Weerasuriya, A., Effects of hyperkalaemia on the excitability of peripheral nerve. J. Neurol. Neurosurg. Psychiat.35 (1972) 149–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Skoglund, C.R., The response to linearly increasing currents in mammalian motor and sensory nerves. Acta physiol. scand.4 (1942) suppl. 12.

  31. Spencer, P.S., and Thomas, P.K., Ultrastructural studies of the dying-back process. II. The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseased axons. J. Neurocytol.3 (1974) 763–783.

    Article  CAS  PubMed  Google Scholar 

  32. Stämpfli, R., Overview of studies on the physiology of conduction in myelinated nerve fibers; in: Advances in neurology, vol. 31, Demyelinating diseases, Basic and clinical electrophysiology, pp. 11–23. Eds S.G. Waxman, and J.M. Ritchie. Raven Press, New York 1981.

    Google Scholar 

  33. Stämpfli, R., and Hille, B., Electrophysiology of the peripheral myelinated nerve; in: Frog neurobiology, pp. 3–32. Eds R. Llinas and W. Precht. Springer, Berlin/Heidelberg/New York 1976.

    Chapter  Google Scholar 

  34. Tao-Cheng, J.-H., and Rosenbluth, J., Nodal and paranodal membrane structure in complementary freeze-fracture replicas of amphibian peripheral nerves. Brain Res.199 (1980) 249–265.

    Article  CAS  PubMed  Google Scholar 

  35. Vallbo, Å.B., Accomodation related to inactivation of the sodium permeability in single myelinated nerve fibers fromXenopus laevis. Acta physiol. scand.61 (1964) 429–444.

    CAS  PubMed  Google Scholar 

  36. Waxman, S.G., and Foster, R.E., Ionic channel distribution and heterogeneity of the axon membrane in myelinated fibers. Brain Res. Rev.2 (1980) 205–234.

    Article  Google Scholar 

  37. Wiley, C.A., and Ellisman, M.H., Rows of dimeric-particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the node of Ranvier. J. Cell Biol.84 (1980) 261–280.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgment. This work was supported by the Swedish Medical Research Council; Project No. 03157.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthold, C.H., Rydmark, M. Anatomy of the paranode-node-paranode region in the cat. Experientia 39, 964–976 (1983). https://doi.org/10.1007/BF01989761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01989761

Navigation