Skip to main content
Log in

Studies of a key protein in the mechanism of the excitation-contraction coupling process of frog skeletal muscle, using phenylglyoxal

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The excitation-contraction (E-C) coupling process in single twitch fibres from frog toe muscle was inhibited selectively by phenylglyoxal (PGO), a specific guanidyl modifying reagent. A new protein (31.5 kDa), which has PGO-binding ability and seems to play a key role in the E-C coupling process, was solubilized from transverse tubule membrane-junctional sarcoplasmic reticulum complexes (TTM-JSR) of frog skeletal muscles, using14C-PGO. The monoclonal antibody against this protein applied extracellularly inhibited the E-C coupling process of the single fibres. This protein appears to constitute the very first step of input for E-C coupling. It is considered to behave as an indispensable part of an ‘electrometer’ to measure membrane potentials. Therefore, the name ‘electrometrin’ is suggested for the new protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Fujino, M., Sato, Y., Arima, T., and Takai, H., J. physiol. Soc. Japan45 (1983) 507.

    Google Scholar 

  2. Fujino, M., Sato, Y., Arima, T., and Takai, H., J. physiol. Soc. Japan46 (1984) 469.

    Google Scholar 

  3. Takahashi, K., J. biol. Chem.243 (1968) 6171.

    Google Scholar 

  4. Fujino, S., and Fujino, M., Can. J. Physiol. Pharmac.60 (1982) 542.

    Google Scholar 

  5. Fujino, S., Satoh, K., Bando, T., Kurokawa, T., Nakai, T., Takashima, K., and Fujino, M., Experientia45 (1989) 466.

    Google Scholar 

  6. Brunschwic, J. P., Brandt, N., Caswell, A. H., and Lukeman, D. S., J. Cell Biol.93 (1982) 533.

    Google Scholar 

  7. Laemmli, U. K., Nature227 (1970) 680.

    Google Scholar 

  8. Wood, J. G., and Sarinana, F. O., Analyt. Biochem.69 (1975) 320.

    Google Scholar 

  9. Mayol, R. F., and Thayer, S. A., Biochemistry9 (1970) 2484.

    Google Scholar 

  10. Köhler, G., and Milstein, C., Eur. J. Immun.6 (1976) 511.

    Google Scholar 

  11. Tijssen, P., Practice and Theory of Enzyme Immunoassays. Elsevier Science Publishers, Amsterdam 1985.

    Google Scholar 

  12. Fujino, M., Arima, T., Yamada, C., Harano, K., Takahashi, M., Goto, M., and Seno-o, M., Proc. Int. Union Physiol. Sci.XVII (1989) 186.

    Google Scholar 

  13. Fujino, M., Arima, T., Sato, Y., Shinohara, K., Harano, K., and Tokunaga, K., J. Muscle Res. Cell Motil.8 (1987) 282.

    Google Scholar 

  14. Fujino, M., Arima, T., Harano, K., Goto, M., Seno-o, M., and Shimada, N., J. physiol. Soc. Japan50 (1988) 525.

    Google Scholar 

  15. Fujino, M., Satellite Symposium (Hakone) for muscle contraction at the XXIII Int. Congress of Physiol. Sci., Tokyo 1965.

  16. Leung, A. T., Imagawa, T., and Campbell, K. P., J. biol. Chem.262 (1987) 7943.

    Google Scholar 

  17. Catterall, W. A., Science242 (1988) 50.

    Google Scholar 

  18. Jay, S. D., Ellis, S. B., McCue, A. F., Williams, M. E., Vedvick, T. S., Harpold, M. M., and Campbell, K. P., Science248 (1990) 490.

    Google Scholar 

  19. Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., and Numa, S., Nature328 (1987) 313.

    Google Scholar 

  20. Rios, E., and Brum, G., Nature325 (1987) 717.

    Google Scholar 

  21. Leung, A. T., Imagawa, T., Block, B. A., Franzini-Armstrong, C., and Campbell, K. P., J. biol. Chem.263 (1988) 994.

    Google Scholar 

  22. Block, B. A., Imagawa, T., Campbell, K. P., and Franzini-Armstrong, C., J. Cell Biol.107 (1988) 2587.

    Google Scholar 

  23. Borsotto, M., Barhanin, J., Fosset, M., and Lazdunski, M., J. biol. Chem.260 (1985) 14255.

    Google Scholar 

  24. Kawamoto, R. M., Brunschwig, J.-P., Kim, K. C., and Caswell, A. H., J. Cell Biol.103 (1986) 1405.

    Google Scholar 

  25. Lai, F. A., Erickson, H. P., Rousseau, E., Liu, Q. Y., and Meissner, G., Nature331 (1988) 315.

    Google Scholar 

  26. Fujino, S., Fujino, M., Satoh, K., Nakai, T., et al, 3rd Int. Symp. on Excitation-Contraction Coupling in Skeletal, Cardiac and Smooth Muscle. Banff, Alberta, Canada, June 26–30, 1991. Abstract P9.

  27. Fujino, S., Fujino, M., Satoh, K., and Nakai, T., Jap. J. Pharmac.55 Suppl. 2 (1991) 154P.

  28. Arima, T., Hasegawa, C., Harano, K., and Fujino, M., Jap. J. Physiol.41 Suppl. (1991) S 286.

    Google Scholar 

  29. Schneider, M. F., and Chandler, W. K., Nature270 (1973) 746.

    Google Scholar 

  30. Etter, E. F., J. Physiol., Lond.421 (1990) 441.

    Google Scholar 

  31. Cullen, M. J., Hollingworth, S., Marshall, M. W., and Robson, E., J. Muscle Res. Cell Motil.11 (1990) 167.

    Google Scholar 

  32. Towbin, H., Staehelin, T., and Gordon, J., Proc. natl Acad. Sci. USA76 (1979) 4350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujino, S., Satoh, K., Nakai, T. et al. Studies of a key protein in the mechanism of the excitation-contraction coupling process of frog skeletal muscle, using phenylglyoxal. Experientia 49, 138–144 (1993). https://doi.org/10.1007/BF01989418

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01989418

Key words

Navigation