Experientia

, Volume 49, Issue 2, pp 110–117 | Cite as

The polymerization of sickle hemoglobin in solutions and cells

  • F. A. Ferrone
Article

Abstract

The polymerization of sickle hemoglobin occurs by the same mechanisms in solutions and in cells, and involves the formation of 14 stranded fibers from hemoglobin molecules which have assumed a deoxy quaternary structure. The fibers form via two types of highly concentration-dependent nucleation processes: homogeneous nucleation in solutions with hemoglobin activity above a critical activity, and heterogeneous nucleation in similarly supersaturated solutions which also contain hemoglobin polymers. The latter pathway is dominant, and creates polymer arrays called domains. The individual polymers bend, but also cross-link, and the resulting mass behaves as a solid. The concentration of polymerized hemoglobin increases exponentially unless clamped by rate limiting effects such as oxygen delivery.

Key words

Polymerization sickle hemoglobin sickle cell disease kinetics thermodynamics polymer domains nucleation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Basak, S., Ferrone, F. A., and Wang, J. T., Kinetics of domain formation by sickle hemoglobin polymers. Biophys. J.54 (1988) 829–843.Google Scholar
  2. 2.
    Beach, D. A., Bustamante, C., Wells, K. S., and Foucar, K. M., Differential polarization imaging. III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood cells. Biophys. J.53 (1988) 449–456.Google Scholar
  3. 3.
    Bishop, M. F., and Ferrone, F. A., Kinetics of nucleation controlled polymerization: a perturbation treatment for use with a secondary pathway. Biophys. J.46 (1984) 631–644.Google Scholar
  4. 4.
    Briehl, R. W., Solid-like behaviour of unsheared sickle hemoglobin gels and the effects of shear. Nature228 (1980) 622–624.Google Scholar
  5. 5.
    Briehl, R. W., Mann, E. S., and Josephs, R., Length distributions of hemoglobin S fibers. J. molec. Biol.211 (1990) 693–698.Google Scholar
  6. 6.
    Cho, M. R., and Ferrone, F. A., Monomer diffusion into polymer domains in sickle hemoglobin. Biophys. J.58 (1990) 1067–1073.Google Scholar
  7. 7.
    Cho, M. R., and Ferrone, F. A., Monomer diffusion and polymer alignment in domains of sickle hemoglobin. Biophys. J.63 (1991) 205–214.Google Scholar
  8. 8.
    Dykes, G., Crepeau, R. H., and Edelstein, S. J., Three dimensional reconstruction of the fibres of sickle cell hemoglobin. Nature272 (1978) 506–510.Google Scholar
  9. 9.
    Dykes, G. W., Crepeau, R. H., and Edelstein, S. J., Three dimensional reconstruction of 14-filament fibers of hemoglobin S. J. molec. Biol.130 (1979) 451–472.Google Scholar
  10. 10.
    Eaton, W. A., and Hofrichter, J., Hemoglobin S gelation and sickle cell disease. Blood70 (1987) 1245–1266.Google Scholar
  11. 11.
    Eaton, W. A., and Hofrichter, J., Sickle cell hemoglobin polymerization. Adv. Protein Chem.40 (1990) 63–280.Google Scholar
  12. 12.
    Ferrone, F. A., Hofrichter, J., and Eaton, W. A., Kinetics of sickle hemoglobin polymerization II: a double nucleation mechanism. J. molec. Biol.183 (1985) 611–631.Google Scholar
  13. 13.
    Ferrone, F. A., Hofrichter, J., and Eaton, W. A., Kinetics of sickle hemoglobin polymerization I: studies using temperature-jump and laser photolysis techniques. J. molec. Biol.183 (1985) 591–610.Google Scholar
  14. 14.
    Ferrone, F. A., Hofrichter, J., Sunshine, H., and Eaton, W. A., Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys. J.32 (1980) 361–377.Google Scholar
  15. 15.
    Ferrone, F. A., Cho, M. R., and Bishop, M. F., Can a successful mechanism for HbS gelation predict sickle cell crises? in: Approaches to the Therapy of Sickle Cell Anemia, pp. 53–66. Eds Y. Beuzard, S. Charache and F. Galacteros. INSERM, Paris 1986.Google Scholar
  16. 16.
    Gill, S., Spokane, R., Benedict, R. C., Fall, L., and Wyman, J., Ligand-linked phase equilibria of sickle cell hemoglobin. J. molec. Biol.140 (1980) 299–312.Google Scholar
  17. 17.
    Goldberg, M. A., Lalos, A. T., and Bunn, H. F., The effect of erythrocyte membrane preparations on the polymerization of sickle hemoglobin. J. biol. Chem.256 (1981) 193–197.Google Scholar
  18. 18.
    Hofrichter, J., Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves. J. molec. Biol.189 (1986) 553–571.Google Scholar
  19. 19.
    Hofrichter, J., Ross, P. D., and Eaton, W. A., A physical description of hemoglobin S gelation, in: Proceedings of the Symposium on Molecular and Cellular Aspects of Sickle Cell Disease, pp. 185–224. Eds J. I. Hercules, G. L. Cottan, M. R. Waterman and A. N. Schechter. DHEW publication NIH 76-1007, 1976.Google Scholar
  20. 20.
    Hofrichter, J., Ross, P. D., and Eaton, W. A., Supersaturation in sickle cell hemoglobin solutions. Proc. natl Acad. Sci. USA73 (1976) 3035–3039.Google Scholar
  21. 21.
    Kam, Z., and Hofrichter, J., Quasi-elastic laser light scattering from solutions and gels of hemoglobin S. Biophys. J.50 (1986) 1015–1020.Google Scholar
  22. 22.
    Lonsdorfer, J., Bogui, P., Otayeck, A., Bursaux, E., Poyart, C., and Cabannes, R., Cardiorespiratory adjustments in chronic sickle cell anemia. Bull. Eur. Physiopath. Respir.19 (1983) 339.Google Scholar
  23. 23.
    Mackie, L. H., and Hochmuth, R. M., The influence of oxygen tension, temperature and hemoglobin concentration on the rheologic properties of sickle erythrocytes. Blood76 (1990) 1256–1261.Google Scholar
  24. 24.
    Mickols, W., Maestre, M. F., Tinoco, I., and Embury, S. H., Visualization of oriented hemoglobin S in individual erythrocytes by differential extinction of polarized light. Proc. natl Acad. Sci. USA82 (1985) 6527–6531.Google Scholar
  25. 25.
    Minton, A. P., The effect of volume occupancy upon the thermodynamic activity of proteins: Some biological consequences. Molec. Cell Biochem.55 (1983) 119–140.Google Scholar
  26. 26.
    Monod, J. C., Wyman, J., and Changeux, J. P., On the nature of allosteric transitions: a plausible model. J. molec. Biol.12 (1965) 88–118.Google Scholar
  27. 27.
    Mozzarelli, A., Hofrichter, J., and Eaton, W. A., Delay time of hemoglobin S polymerization prevents most cells from sickling. Science237 (1987) 500–506.Google Scholar
  28. 28.
    Mozzarelli, A., Rivetti, C., Rossi, G. L., Henry, E. R., and Eaton, W. A., Crystals of hemoglobin with the T quarternary structure bind oxygen noncooperatively with no Bohr effect. Nature351 (1991) 416–419.Google Scholar
  29. 29.
    Nash, G., Johnson, C. J., and Meiselman, H. J., Influence of oxygen tension on the viscoelastic behavior of red blood cells in sickle cell disease. Blood67 (1986) 110–118.Google Scholar
  30. 30.
    Nash, G. B., Red cell mechanics: what changes are needed to adversely affect in vivo circulation. Biorheology28 (1991) 231–239.Google Scholar
  31. 31.
    Pennelly, R. R., and Noble, R. W., Functional identity of hemoglobins S and A in the absence of polymerization, in: Biochemical and Clinical Aspects of Hemoglobin Abnormalities, pp. 401–411. Ed. W. S. Caughey. Academic Press, New York 1978.Google Scholar
  32. 32.
    Poillon, W. N., Robinson, M. D., and Kim, B. C., Deoxygenated sickle hemoglobin: modulation of its solubility by 2,3-diphosphoglycerate and other allosteric polyanions. J. biol. Chem.260 (1985) 13897–13900.Google Scholar
  33. 33.
    Samuel, R. E., Salmon, E. D., and Briehl, R. W., Nucleation and growth of fibres and gel formation in sickle cell hemoglobin. Nature345 (1990) 833–835.Google Scholar
  34. 34.
    Schechter, A. N., Noguchi, C. T., and Rodgers, G. P., Sickle cell disease, in: Molecular Basis of Blood Diseases, pp. 179–218. Eds G. Stamatoyannopoulos, A. W. Nienhuis, P. Leder and P. W. Majerus. Saunders, Philadelphia, PA 1987.Google Scholar
  35. 35.
    Sunshine, H. R., Hofrichter, J., and Eaton, W. A., Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. J. molec. Biol.133 (1979) 435–467.Google Scholar
  36. 36.
    Sunshine, H. R., Hofrichter, J., Ferrone, F. A., and Eaton, W. A., Oxygen binding by sickle cell hemoglobin polymers. J. molec. Biol.158 (1982) 251–273.Google Scholar
  37. 37.
    Watowich, S. J., Gross, L. J., and Josephs, R. J., Intramolecular contacts within sickle hemoglobin fibers. J. molec. Biol.209 (1989) 821–828.Google Scholar
  38. 38.
    Wellems, T. E., Vassar, R. J., and Josephs, R., Polymorphic assemblies of double strands of sickle cell hemoglobin. Manifold pathways of deoxyhemoglobin S crystallization. J. molec. biol.13 (1981) 1011–1026.Google Scholar
  39. 39.
    White, J. G., and Heagan, B.. The fine structure of cell free sickled hemoglobin. Am. J. Path.58 (1970) 1–17.Google Scholar
  40. 40.
    Wishner, B. C., Ward, K. B., Lattman, E. E., and Love, W. E., Crystal structure of sickle-cell deoxyhemoglobin at 5 Å resolution. J. molec. Biol.98 (1975) 179–194.Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • F. A. Ferrone
    • 1
  1. 1.Department of Physics and Atmospheric ScienceDrexel UniversityPhiladelphiaUSA

Personalised recommendations