Skip to main content
Log in

Membrane transport of Na and K and cell dehydration in sickle erythrocytes

  • Published:
Experientia Aims and scope Submit manuscript

Abstract

The cellular concentration of Hb S plays a central role in the kinetic of Hb S polymerization and cell sickling. Blood of patients with homozygous sickle cell (SS) anemia contains a variable fraction of cells which are markedly dehydrated and have increased Hb S concentration. Since a decrease in cellular Hb S concentration reduces Hb S polymerization and sickling, the study of the processes leading to sickle cell dehydration has important pathophysiological and therapeutic implications. Sickle cell dehydration is due to cellular loss of K and Cl. K loss in sickle cells can take place via either the Ca2+-activated K+ channel, or the K−Cl cotransport, or the combined effect of oxidative damage and deformation of the red cell membrane. Inhibitors of K transport through these pathways could be used to prevent dehydration of sickle cells in vivo, provided that they can be administered safely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Adelman, J. P., Shen, K. Z., Kavanaugh, M. P., Warren, R. A., Wu, Y. N. Lagrutta, A., Bond, C. T., and North, R. A., Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron9 (1992) 209–216.

    Google Scholar 

  2. Al-Rohil, N., and Jennings, M. L., Volume-dependent K transport in rabbit red blood cells: comparison with oxygenated human SS cells. Am. J. Physiol.257 1989 (Cell. Physiol.26): C114-C121.

    Google Scholar 

  3. Alvarez, J., and Garcia-Sancho, J., An estimate of the number of Ca2+-dependent K+ channels in the human red cell. Biochim. biophys. Acta903 (1987) 543–546.

    Google Scholar 

  4. Asakura, T., and Mayberry, J., Relationship between morphologic characteristics of sickle cells and method of deoxygenation. J. Lab. clin. Med.104 (1984) 987–994.

    Google Scholar 

  5. Ballas, S. K., Larnar, J., Smith, E. D., Surrey, S., Schwartz, E., and Rappaport, E. F., The xerocytosis of Hb Sc disease. Blood69 (1987) 124–130.

    Google Scholar 

  6. Berkowitz, L. R., and Orringer, E. P., Passive sodium and potassium movements in sickle erythrocytes. Am. J. Physiol.249 (1985) (Cell Physiol.18) C208-C214.

    Google Scholar 

  7. Bertles, J. F., and Milner, P. F. A., Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle cell anemia. J. clin. Invest.47 (1968) 1731–1741.

    Google Scholar 

  8. Bookchin, R. M., Ortiz, O. E., and Lew, V. L., Red cell calcium transport and mechanisms of dehydration in sickle cell anemia, in: Approaches to the Therapy of Sickle Cell Anemia, pp. 291–300. Eds Y. Beuzard, S. Charache, F. Galacteros. Les Editions INSERM, Paris 1986.

    Google Scholar 

  9. Bookchin, R. M., Ortiz, O. E., and Lew, V. L., Evidence for a direct reticulocyte origin of dense red cells in sickle cell anemia. J. clin. Invest.87 (1986) 113–124.

    Google Scholar 

  10. Brugnara, C., Kopin, A. K., Bunn, H. F., and Tosteson, D. C., Regulation of cation content and cell volume in erythrocytes from patients with homozygous hemoglobin C disease. J. clin. Invest.75 (1985) 1608–1617.

    Google Scholar 

  11. Brugnara, C., Bunn, H. F., and Tosteson, D. C., Regulation of erythrocyte cation and water content in sickle cell anemia. Science232 (1986) 388–390.

    Google Scholar 

  12. Brugnara, C., and Tosteson, D. C., Cell volume, K transport and cell density in human erythrocytes. Am. J. Physiol.252 (1987) (Cell Physiol.21): C269-C276.

    Google Scholar 

  13. Brugnara, C., and Tosteson, D. C., Inhibition of K transport by divalent cations in sickle erythrocytes. Blood70 (1987) 1810–1815.

    Google Scholar 

  14. Brugnara, C., Van Ha, T., and Tosteson, D. C., Role of chloride in potassium transport through a K−Cl cotransport system in human red blood cells. Am. J. Physiol.256 (1989) (Cell Physiol.25) C993-C1004.

    Google Scholar 

  15. Brugnara C., Bunn, H. F., and Tosteson, D. C., Ion content and transport and the regulation of volume in sickle cells. Ann. N. Y. Acad. Sci.565 (1989) 96–103.

    Google Scholar 

  16. Brugnara C., Van Ha, T., and Tosteson, D. C., Acid pH induces formation of dense cells in sickle erythrocytes. Blood74 (1989) 487–495.

    Google Scholar 

  17. Brugnara, C., and De Franceschi, L., The effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes. J. cell. Physiol. In press.

  18. Brugnara, C., De Franceschi, L., and Alper, S. L., Ca2+-activated K+ channel of human and rabbit red cells: ligand binding and transport inhibition by synthetic scorpion toxins. J. gen Physiol.100 (1992) 47a.

    Google Scholar 

  19. Canessa, M., Spalvins, A., and Nagel, R. L., Volume-dependent and NEM-stimulated K+, Cl transport is elevated in SS, SC and CC human red cells. FEBS Lett.200 (1986) 197–202.

    Google Scholar 

  20. Canessa, M., Fabry, M. E., Blumenfeld, N., and Nagel, R. L., Volume-stimulated, Cl-dependent K+ efflux is highly expressed in young human red cells containing normal hemoglobin or HbS. J. Membr. Biol.97 (1987) 97–105.

    Google Scholar 

  21. Canessa, M., Fabry, M. E., and Nagel, R. L., Deoxygenation inhibits the volume-stimulated, Cl-dependent K+ efflux in SS and young AA cells: a cytosolic Mg++ modulation. Blood70 (1987) 1861–1866.

    Google Scholar 

  22. Canessa, M., Fabry, M. E., Suzuka, S. M., Morgan, K., and Nagel, R. L., Na+/H+ exchange is increased in sickle cell anemia and young normal red cells. J. Membr. Biol.116 (1990) 107–115.

    Google Scholar 

  23. Christopherson, P., Ca-activated K channel from human erythrocyte membranes: single channel rectification and selectivity. J. Membr. Biol.119 (1991) 75–83.

    Google Scholar 

  24. Clark, M. R., Guatelli, J. C., White, A. T., and Shohet, S. B., Study on the dehydrating effect of the red cell Na+/K+ pump in nystatin-treated cells with varying Na+ and water contents. Biochim. biophys. Acta646 (1981) 422–432.

    Google Scholar 

  25. Clark, M. R., Morrison, C. E., and Shohet, S. B., Monovalent cation transport in irreversibly sickled cells. J. clin. Invest.62 (1978) 329–337.

    Google Scholar 

  26. Clark, M. R., and Rossi, M. E., Permeability characteristics of deoxygenated sickle cells. Blood76 (1990) 2139–2145.

    Google Scholar 

  27. Clark, M. R., Unger, R. C., and Shohet, S. B., Monovalent cation composition and ATP and lipid content of irreversibly sickled cells. Blood51 (1978) 1169–1178.

    Google Scholar 

  28. Colasure, G. C., and Parker, J. C., Cytosolic protein concentration is the primary volume signal in dog red cells. J. gen. Physiol.98 (1991) 881–892.

    Google Scholar 

  29. Corbett, J. D., and Golan, D. E., Band 3 and glycophorin are progressively aggregated in density fractionated sickle and normal red blood cells: evidence from rotational and lateral mobility studies. J. clin. Invest. In press.

  30. Eaton, W. A., and Hofrichter, J., Sickle cell hemoglobin polymerization. Adv. Protein Chem.40 (1990) 63–278.

    Google Scholar 

  31. Ellory, J. C., Kirk, K., Culliford, S. J., Nash, G. B., Stuart, J., Nitrendipine is a potent inhibitor of the Ca2+-activated K+ channel of human erythrocytes. FEBS296 (1992) 219–221.

    Google Scholar 

  32. Erdmann, E., and Hasse, W., Quantitative aspects of ouabain binding to human erythrocyte and cardiac membranes. J. Physiol.251 (1975) 671–682.

    Google Scholar 

  33. Escobales, N., and Canessa, M., Ca++-activated Na+ fluxes in human red cells: amiloride sensitivity. J. biol. Chem.260 (1985) 11914–11923.

    Google Scholar 

  34. Escobales, N., and Canessa, M., Amiloride-sensitive Na+ transport in human red cells: evidence for a Na/H exchange system. J. Membr. Biol.90 (1986) 21–28.

    Google Scholar 

  35. Escobales, N., and Rivera, A., Na+/Na+ exchange and Na+/H+ antiport in rabbit erythrocytes: two distinct transport systems. J. Membr. Biol.120 (1991) 41–49.

    Google Scholar 

  36. Fabry, M. E., and Nagel, R. L., Heterogeneity of red cells in the sickler: a characteristic with practical clinical and pathophysiological implications. Blood Cells8 (1982) 9–15.

    Google Scholar 

  37. Fabry, M. E., Romero, J. R., Buchanan, I. D., Suzuka, S. M., Stamatoyannopoulos, G., Nagel, R. L., and Canessa, M., Rapid increase in red blood cell density driven by the KCl cotransport in a subset of sickle cell anemia reticulocytes and discocytes. Blood78 (1991) 217–225.

    Google Scholar 

  38. Freeman, C. J., Bookchin, R. B., Ortiz, O. E., and Lew, V. L., K+-permeabilized human red cells lose an alkaline, hypertonic fluid containing excess K over diffusible anions. J. Membr. Biol.96 (1987) 235–241.

    Google Scholar 

  39. Garay, R. P., Nazareth, C., Hannaert, P. A., and Cragoe, E. J. Jr, Demonstration of a [K+, Cl]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]-alkanoic acids: Regulation of cell swelling and distinction from the bumetanide-sensitive [Na+, K+, Cl]-cotransport system. Molec. Pharmac.33 (1988) 696–701.

    Google Scholar 

  40. Gardos, G., The function of calcium in the potassium permeability of human erythrocytes. Biochem. biophys. Acta30 (1958) 653–654.

    Google Scholar 

  41. Glader, B. E., and Nathan, D. G., Cation permeability alterations during sickling: relationship to cation composition and cellular hydration of irreversibly sickled cells. Blood51 (1978) 983–989.

    Google Scholar 

  42. Grygorczyk, R., Schwarz, W., and Passow, H., Ca-activated K channels in human red cells. Biophys. J.45 (1984) 693–8.

    Google Scholar 

  43. Haas, M., and Harrison, J. H., Stimulation of K−Cl cotransport in rat red cells by a hemolytic anemia-producing metabolite of dapsone. Am. J. Physiol.256 (1989) (Cell Physiol.25): C265-C272.

    Google Scholar 

  44. Hall, A. C., and Ellory, J. C., Evidence for the presence of a volume-sensitive KCl transport in ‘young’ human red cells. Biochim. biophys. Acta858 (1986) 317–320.

    Google Scholar 

  45. Hamill, O. P., Potassium and chloride channels in red blood cells, in: Single Channel Recording, pp. 451–71. Eds B. Sackmann and E. Neher. Plenum Press, New York 1983.

    Google Scholar 

  46. Hebbel R. P., Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease. Blood77 (1991) 214–237.

    Google Scholar 

  47. Hebbel R. P., and Mohandas, N., Reversible deformation-dependent erythrocyte cation leak: extreme sensitivity conferred by minimal peroxidation. Biophys. J.60 (1991) 712–715.

    Google Scholar 

  48. Horiuchi, K., and Asakura, T., Formation of light irreversibly sickled cells during deoxygenation-oxygenation cycles. J. Lab. clin. Med.110 (1987) 653–660.

    Google Scholar 

  49. Horiuchi, K., Ballas, S. K., and Asakura, T., The effect of deoxygenation rate on the formation of irreversibly sickled cells. Blood71 (1988) 46–51.

    Google Scholar 

  50. Jennings, M. L., and Al-Rohil, N., Kinetics of activation and inactivation of swelling-stimulated K+/Cl transport. Volume-sensitive parameter is the rate constant for inactivation. J. gen. Physiol.95 (1990) 1021–1040.

    Google Scholar 

  51. Jennings, M. L., and Schultz, R. K., Swelling-activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than cell shape. Am. J. Physiol.259 (1990) (Cell. Physiol.28): C960–967.

    Google Scholar 

  52. Jennings, M. L., and Schultz, R. K., Okadaic acid inhibition of KCl cotransport. J. gen. Physiol.97 (1991) 799–818.

    Google Scholar 

  53. Jensen, M., Shohet, S. B., and Nathan, D. G., The role of red cell energy metabolism in the generation of irreversibly sickled cells in vitro. Blood42 (1973) 835–842.

    Google Scholar 

  54. Johnson, R. M., and Gannon, S. A., Erythrocyte cation permeability induced by mechanical stress: a model for sickle cell cation loss. Am. J. Physiol.259 (1990) (Cell. Physiol.28): C746-C751.

    Google Scholar 

  55. Johnson, R. M., and Tang, K., Induction of Ca(2+)-activated K+ channel in human erythrocytes by mechanical stress. Biochim. biophys. Acta1107 (1992) 314–318.

    Google Scholar 

  56. Joiner, C. H., Dew, A., and Ge, D. L., Deoxygenation-induced cation fluxes in sickle cells: relationship between net potassium efflux and net sodium influx. Blood Cells13 (1988) 339–354.

    Google Scholar 

  57. Joiner, C. H., Deoxygenation-induced cation fluxes in sickle cells: II. Inhibition by stilbene disulfonates. Blood76 (1990) 212–220.

    Google Scholar 

  58. Joiner, C. H., and Lauf, P. K., Ouabain binding and potassium transport in young and old populations of human red cells. Membr. Biochem.1 (1978) 187–202.

    Google Scholar 

  59. Joiner, C. H., Morris, C. L., and Cooper, E. S., Deoxygenation-induced cation fluxes in sickle cells; III. pH dependence and response to membrane potential. Am. J. Physiol. (Cell. Physiol.) In press.

  60. Joiner, C. H., Platt, O. S., and Lux, S. E., Cation depletion by the sodium pump in red cells with pathologic leaks: sickle cells and xerocytes. J. clin. Invest.78 (1986) 1487–1496.

    Google Scholar 

  61. Kaji, D. M., Kinetics of volume-sensitive K transport in human erythrocytes: evidence for asymmetry. Am. J. Physiol.256 (1989) (Cell. Physiol.25): C1214–1223.

    Google Scholar 

  62. Kaji, D. M., Nifedipine inhibits calcium-activated K transport in human erythrocytes. Am. J. Physiol.259 (1990) (Cell. Physiol.28): C332-C339.

    Google Scholar 

  63. Kaji, D. M., and Tsukitani, Y., Role of protein phosphatase in activation of KCl cotransport in human erythrocytes. Am. J. Physiol.260 (1991) (Cell. Physiol.29): C178-C181.

    Google Scholar 

  64. Kaperonis, A. A., Bertles, J. F., and Chien, S., Variability of intracellular pH within individual populations of SS and AA erythrocytes. Br. J. Haemat.43 (1979) 391–400.

    Google Scholar 

  65. Lauf, P. K., Bauer, J., Adragna, N. C., Fjise, H., Zade-Oppen, A. M., Ryu, K. H., Delpire, E., Erythrocyte K−Cl cotransport: properties and regulation. Am. J. Physiol.263 (1992) (Cell. Physiol.32): C917–932.

    Google Scholar 

  66. Latorre, R., Oberhauser, A., Labarca, P., and Alvarez, O., Varieties of calcium-activated potassium channels. A. Rev. Physiol.51 (1989) 385–399.

    Google Scholar 

  67. Lawrence, C., Fabry, M. E., and Nagel, R. L., The unique red cell heterogeneity of SC disease: crystal formation, dense reticulocytes, and unusual morphology. Blood78 (1991) 2104–2112.

    Google Scholar 

  68. Lew, V. L., and Bookchin, R. B., Volume, pH and ion-content regulation in human red cells: analysis of transient behavior with an integrated model. J. Membr. Biol.92 (1986) 57–74.

    Google Scholar 

  69. Lew, V. L., Freeman, C. J., Ortiz, O. E., and Bookchin, R. M., A mathematical model of the volume, pH and ion content regulation in reticulocytes. J. clin. Invest.87 (1991) 100–112.

    Google Scholar 

  70. Lew, V. L., Muallem, L. S., and Seymour, C. A., Properties of the Ca2+-activated K channel in one-step inside-out vesicles from human red cell membranes. Nature296 (1982) 742–744.

    Google Scholar 

  71. Liu, S. C., Derick, L. H., Zhai, S., and Palek, J., Uncoupling of the spectrin-based skeleton form the lipid bilayer in sickled red cells. Science252 (1991) 574–576.

    Google Scholar 

  72. Lu, L., Montrose-Rafizadeh, C., and Guggino, W. B.. Ca2+ activated K+ channels from rabbit kidney medullary thick ascending limb cells expressed in xenopus oocytes. J. biol. Chem.265 (1990) 16190–16194.

    Google Scholar 

  73. Lux, S. E., John, K. M., and Karnovsky, M. J., Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J. clin. Invest.58 (1976) 955–960.

    Google Scholar 

  74. Maridonneau, I., Braquet, P., and Garay, P. R., Na+ and K transport damage induced by oxygen free radicals in human red cell membranes. J. biol. Chem.258 (1983) 3107–3113.

    Google Scholar 

  75. Miller, C., 1990 Annus Mirabilis of potassium channels. Science252 (1991) 1092–6.

    Google Scholar 

  76. Mohandas, N., Rossi, M. E., and Clark, M. R., Association between morphologic distortion of sickle cells and deoxygenation-induced cation permeability increase. Blood68 (1986) 450–454.

    Google Scholar 

  77. Moore, R. B., Mankad, M. V., Shriver, S. K., Mankad, V. N., and Plishker, G. A., Reconstitution of Ca2+-dependent K+ transport in erythrocyte membrane vesicles required a cytoplasmic protein. J. biol. Chem.266 (1991) 18964–18968.

    Google Scholar 

  78. Nash, G. B., Boghossian, S., Parmar, J., Dormandy, J. A., and Bevan, D., Alteration of the mechanical properties of sickle cells by repetive deoxygenation: role of calcium and the effects of calcium blockers. Br. J. Haemat.72 (1989) 260–264.

    Google Scholar 

  79. Nash, G. B., Johnson, C. S., and Meiselman, H. J., Rheologic impairment of sickle RBCs induced by repetitive cycles of deoxygenation-reoxygenation. Blood7 (1988) 539–545.

    Google Scholar 

  80. Ney, P. A., Christopher, M. M., and Hebbel, R. P., Synergistic effects of oxidation and deformation on erythrocyte monovalent cation leak. Blood75 (1990) 1192–1198.

    Google Scholar 

  81. Ohnishi, S. T., Inhibition of the in vitro formation of irreversibly sickled cells by cepharanthine. Br. J. Haemat.55 (1983) 665–671.

    Google Scholar 

  82. Ohnishi, S. T., Horiuchi, K. Y., and Horiuchi, K., The mechanism of in vitro formation of irreversibly sickled cells and modes of action of its inhibitors. Biochim. biophys. Acta886 (1986) 119–129.

    Google Scholar 

  83. Ohnishi, S. T., Horiuchi, K. Y., Horiuchi, K., Jurman, M. E., and Sadanaga, K. K., Nitrendipine, nifedipine and verapamil inhibit the in vitro formation of irreversibly sickled cells. Pharmacology32 (1986) 248–256.

    Google Scholar 

  84. Ohnishi, S. T., Katagi, H., and Katagi, C., Inhibition of the in vitro formation of dense cells and of irreversibly sickled cells by charybdotoxin, a specific inhibitor of calcium-activated potassium efflux. Biochim. biophys. Acta1010 (1989) 199–203.

    Google Scholar 

  85. Olivieri, O., Vitoux, D., Bachir, D., Beuzard, U., K+ eflux in deoxygenated sickle cells in the presence or absence of DIOA, a specific inhibitor of the [K+, Cl] cotransport system. Br. J. Haemat.77 (1991) 117–120.

    Google Scholar 

  86. Olivieri, O., Vitoux, D., Galacteros, F., Bachir, D., Blouquit, Y., Beuzard, Y., and Brugnara, C., Hemoglobin variants and activity of the (K+Cl) cotransport system in human erythrocytes. Blood79 (1992) 793–797.

    Google Scholar 

  87. O'Neill, W. C., Swelling-activated K Cl cotransport; metabolic dependence and inhibition by vanadate and fluoride. Am. J. Physiol.260 (1989) (Cell. Physiol.29) C308-C315.

    Google Scholar 

  88. Orringer, E. P., Brockenbrough, J. S., Whitney, A., Glosson, P. S., and Parker, J. C., Okadaic acid inhibits activation of K−Cl cotransport in red blood cells containing hemoglobin S and C. Am. J. Physiol.261 (1991) (Cell. Physiol.30) C591-C593.

    Google Scholar 

  89. Ortiz, O. E., Lew, V. L., and Bookchin, R. M., Calcium accumulated in sickle cell anemia red cells does not affect their potassium (86Rb) flux component. Blood67 (1986) 710–715.

    Google Scholar 

  90. Ortiz, O. E., Lew, V. L., Bookchin, R. M., Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. J. Physiol.427 (1990) 211–226.

    Google Scholar 

  91. Romero, J., Fabry, F., Constantini, F., Nagel, R. L., and Canessa, M., Deoxy-stimulated K+ efflux and K∶Cl cotransport in RBC of a transgenic mouse expressing high levels of human HbS. Br. J. Haemat. 1992; S 47a.

  92. Romero, P. J., Ortiz, C. E., Melitto, C., Metabolic control of the K+ channel of human red cells. J. Membr. Biol.116 (1990) 19–29.

    Google Scholar 

  93. Rosa, R. M., Bierer, B. E., Thomas, R., Stoff, J. S., Kruskall, M., Robinson, S., Bunn, H. F., and Epstein, F. H., A study of induced hyponatremia in the prevention and treatment of sickle cell crisis. New Engl. J. Med.303 (1980) 1138–1143.

    Google Scholar 

  94. Roth, E. F., Nagel, R. L., Bookchin, R. M., pH dependency of potassium efflux from sickled red cells. Am. J. Hemat.11 (1981) 19–27.

    Google Scholar 

  95. Seakins, M., Gibbs, W. N., Milner, P. F., and Bertles, J. F., Erythrocyte Hb S concentration. An important factor in the low oxygen affinity of blood in sickle cell anemia. J. clin. Invest.52 (1973) 422–432.

    Google Scholar 

  96. Sheerin, H. E., Snyder, L. M., and Fairbanks, G., Cation transport in oxidant-stressed human erythrocytes: heightened N-ethylmaleimide activation of passive K+ influx after mild peroxidation. Biochim. biophys. Acta983 (1989) 67–76.

    Google Scholar 

  97. Sorette, M. P., Shiffer, K., and Clark, M. R., Improved isolation of normal human reticulocytes via exploitation of chloride-dependent potassium transport. Blood80 (1992) 249–254.

    Google Scholar 

  98. Starke, C. L., and Jennings, M. L., [K−Cl] cotransport in rabbit red cells: further evidence for regulation by protein phosphatase type 1. Am. J. Physiol. (Cell. Physiol.) In press.

  99. Sugihara, T., and Hebbel, R. P., Exaggerated cation leak from oxygenated sickle RBC during deformation: evidence for a unique leak pathway. Blood80 (1992) 2374–2378.

    Google Scholar 

  100. Sugihara, T., and Hebbel, R. P., Deformation of swollen normal RBC simulates sickling induced cation leak—including a novel bromide inhibitable component. Blood 1992 a In press.

  101. Sugihara, T., Rawicz, W., Evans, E. A., and Hebbel, R. P., Lipid hydroperoxydases permit deformation-dependent leak of monovalent cations from erythrocytes. Blood77 (1991) 2757–2763.

    Google Scholar 

  102. Tosteson, D. C., Carlsen, E., and Dunham, E. T., The effects of sickling on ion transport. J. clin. Invest.31 (1952) 406–411.

    Google Scholar 

  103. Tosteson, D. C., and Hoffman, J. F., Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J. gen. Physiol.44 (1960) 169–194.

    Google Scholar 

  104. Tosteson, D. C., Shea, E., and Darling, R. C., The effects of sickling on ion transport. J. gen. Physiol.39 (1955) 31–54.

    Google Scholar 

  105. Vitoux, D., Olivieri, O., Garay, R. P., Cragoe, E. J., Galacteros, F., and Beuzard, Y., Inhibition of K+ loss and dehydration of sickle cells by DIOA: an inhibitor of the [K+, Cl] cotransport system. Proc. natl Acad. Sci. USA86 (1989) 4273–4276.

    Google Scholar 

  106. Wiley, J. S., and Shaller, C. C., Selective loss of calcium permeability on maturation of reticulocytes. J. clin. Invest.59 (1977) 1113–1119.

    Google Scholar 

  107. Wolff, D., Cecchi, X., Spalvins, A., and Canessa, M., Charybdotoxin blocks with high affinity the Ca-activated K+ channel of Hb A and Hb S red cells: individual differences in the number of channels. J. Membr. Biol.10 (1988) 243–252.

    Google Scholar 

  108. Zee, J., Dubbelman, T. M. A. R., and Steveninck, J., Peroxide-induced membrane damage in human erythrocytes. Biochim. biophys. Acta81 (1985) 38–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugnara, C. Membrane transport of Na and K and cell dehydration in sickle erythrocytes. Experientia 49, 100–109 (1993). https://doi.org/10.1007/BF01989413

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01989413

Key words

Navigation