Advertisement

Helgoländer Meeresuntersuchungen

, Volume 37, Issue 1–4, pp 329–342 | Cite as

Isolation and characterization of a new subspecies ofMycobacterium chelonei infectious for salmonid fish

  • C. K. Arakawa
  • J. L. Fryer
Fishes

Abstract

Rapidly growing, nonchromogenic mycobacteria were isolated from salmonid fish at five locations in the states of Oregon and Montana, USA. The isolates were characterized by biochemical, physiological, genetic and mycolic acid properties, then subjected to taxonomic analysis. Detection of mycobacterial mycolic acids and a percent guanine plus cytosine value of 63 ± 1.7 mol% confirmed that the isolates belong to the genusMycobacterium. The internal similarity of the isolates was 94.2 ± 3.4 %. None of the isolates grew at 37 °C. A comparison of their properties with those of other rapidly growing, nonchromogenic and photochromogenic mycobacteria was made. The salmonid isolates showed a relationship toM. chelonei subspecieschelonei andM. chelonei subspeciesabscessus, but had biochemical properties which were intermediate to these two subspecies. Acid methanolysates of the salmonid isolates, analyzed by two dimensional thin-layer chromatography, produced lipid patterns identical to those of both subspecies ofM. chelonei. Sufficient differences in biochemical properties and the inability to grow at 37 °C suggest these isolates be regarded as a new subspecies ofM. chelonei. We propose the nameM. chelonei subspeciespiscarium subsp. nov. (L. adj.piscarius of fish). The isolates were not infectious for mice. Experimental infections were produced in juvenile salmonid fish. The occurrence of mycobacterial infections in selected salmonid populations from Oregon hatcheries and the Pacific Ocean ranged from 0 to 26 %.

Keywords

Cytosine Pacific Ocean Guanine Mycobacterium Biochemical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature cited

  1. Ashburner, L. D., 1977. Mycobacteriosis in hatchery-confined chinook salmon (Oncorhynchus tshawytscha Walbaum) in Australia. — J. Fish Biol.10, 523–528.Google Scholar
  2. Banner, C. R., Rohovec, J. S. & Fryer, J. L., 1982. A rapid method for labeling rabbit immunoglobulin with fluorescein for use in detection of fish pathogens. — Bull. Europ. Fish Path.2, 35–37.Google Scholar
  3. Bönicke, R., 1962. Identification of mycobacteria by biochemical methods. — Bull. int. Un. Tuberc.32, 13–68.Google Scholar
  4. Frost, G. D., 1968. Oral immunization for possible control of furunculosis in fish. Masters Thesis, Oregon State Univ., Corvallis, Oregon, 59 pp.Google Scholar
  5. Fryer, J. L. & Sanders, J. E., 1981. Bacterial kidney disease of salmonid fish. — A. Rev. Microbiol.35, 273–298.CrossRefGoogle Scholar
  6. Goodfellow, M. & Wayne, L. G., 1982. Taxonomy and nomenclature. In: The biology of the mycobacteria. Ed. by C. Ratledge & J. L. Stanford. Acad. Press, New York,1, 471–521.Google Scholar
  7. Gordon, R. E. & Mihm, J. M., 1959. A comparison of four species of mycobacteria. — J. gen. Microbiol.21, 736–748.PubMedGoogle Scholar
  8. Hanson, R. S. & Phillips, J. A., 1981. Chemical composition. In: Manual of methods for general bacteriology. Ed. by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Am. Soc. Microbiol., Washington, D. C., 328–392.Google Scholar
  9. Johnson, J. L., 1981. Genetic characterization. In: Manual of methods for general bacteriology. Ed. by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Am. Soc. Microbiol., Washington, D. C., 450–472.Google Scholar
  10. Kanetsuna, F. & Bartoli, A., 1972. A simple chemical method to differentiateMycobacterium fromNocardia. — J. gen. Microbiol.70, 209–212.PubMedGoogle Scholar
  11. Kubica, G. P., Baess, I., Gordon, R. E., Jenkins, P. A., Kwapinski, J. B. G., McDurmont, C., Pattyn, S. R., Saito, H., Silcox, V., Stanford, J. L., Takeya, K. & Tsukamura, M., 1972. A cooperative numerical analysis of rapidly growing mycobacteria. — J. gen. Microbiol.73, 55–70.PubMedGoogle Scholar
  12. Kubica, G. P. & Vestal, A. L., 1961. The arylsulfatase activity of acid-fast bacilli. I. Investigation of activity of stock cultures of acid-fast bacilli. — Am. Rev. Resp. Dis.83, 728–732.PubMedGoogle Scholar
  13. Mandel, M. L., Igambi, L., Bergendahl, J., Dodson, M. L. & Scheltgen, E., 1970. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. — J. Bact.101, 333–338.CrossRefPubMedGoogle Scholar
  14. Marks, J., 1976. A system for the examination of tubercle bacilli and other mycobacteria. — Tubercle, Lond.57, 207–225.Google Scholar
  15. Matthaei, E., 1950. Simplified fluorescence microscopy of tubercle bacilli. — J. gen. Microbiol.9, 393–398.Google Scholar
  16. Minnikin, D. E., Hutchinson, I. G., Caldicott, A. B. & Goodfellow, M., 1980. Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. — J. Chromat.188, 221–233.CrossRefGoogle Scholar
  17. Minnikin, D. E., Minnikin, S. M., Goodfellow, M. & Stanford, J. L., 1982. The mycolic acids ofMycobacterium chelonei. — J. gen. Microbiol.128, 817–822.PubMedGoogle Scholar
  18. Mizuguchi, Y. & Tokunaga, T., 1970. Method for isolation of deoxyribonucleic acid from mycobacteria. — J. Bact.104, 1020–1021.PubMedGoogle Scholar
  19. Paik, G. & Suggs, M. T., 1974. Reagents, stains, and miscellaneous test procedures. In: Manual of clinical microbiology. Ed. by E. H. Lennette, E. H. Spaulding, J. P. Truant. Am. Soc. Microbiol., Washington, D. C., 930–950.Google Scholar
  20. Parisot, T. J., 1958. Tuberculosis of fish. A review of the literature with a description of the disease in salmonid fish. — Bact. Rev.22, 240–245.PubMedGoogle Scholar
  21. Ross, A. J., 1960.Mycobacterium salmoniphilium sp. nov. from salmonid fishes. — Am. Rev. Resp. Dis.81, 241–250.PubMedGoogle Scholar
  22. Ross, A. J., 1970, Mycobacteriosis among salmonid fishes. In: A Symposium on diseases of fishes and shellfishes. Ed. by S. F. Snieszko. Am. Fish. Soc., Washington, D. C., 279–283 (Spec. Publ. Am. Fish. Soc. 5).Google Scholar
  23. Ross, A. J., Earp, B. & Wood, J. W., 1959. Mycobacterial infections in adult salmon and steelhead trout returning to the Columbia River Basin and other areas in 1957. — Spec. scient. Rep. U. S. Fish. Wildl. Serv.332, 1–34.Google Scholar
  24. Runyon, E. H., Selin, M. J. & Harris, H. W., 1959. Distinguishing mycobacteria by the niacin test. A modified procedure. — Am. Rev. Resp. Dis.79, 663–665.Google Scholar
  25. Runyon, E. H., Wayne, L. G. & Kubica, G. P., 1974. Family II.Mycobacteriaceae Chester 1897, 63. In: Bergey's manual of determinative biology. Ed. by R. E. Buchanan & N. E. Gibbons. Williams & Wilkins, Baltimore, 681–701.Google Scholar
  26. Saito, H., Gordon, R. E., Juhlin, I., Kappler, W., Kwapinski, J. B. G., McDurmont, C., Pattyn, S. R., Runyon, E. H., Stanford, J. L., Tarnok, I., Tasaka, H., Tsukamura, M. & Weiszfeiler, J., 1977. Cooperative numerical analysis of rapidly growing mycobacteria. The second report. — Int. J. syst. Bact.27, 75–85.Google Scholar
  27. Stanford, J. L. & Beck, A., 1969. Bacteriological serological studies of fast growing mycobacteria identified asMycobacterium friedmanii. — J. gen. Microbiol.58, 99–106.PubMedGoogle Scholar
  28. Tsukamura, M., 1961. Certain saprophytic mycrobacteria from soil sources forming a red color product from PAS. — Am. Rev. Resp. Dis.84, 916.PubMedGoogle Scholar
  29. Tsukamura, M., 1965. Salicylate degradation test for differentiation ofMycobacterium fortuitum from other mycobacteria. — J. gen. Microbiol.41, 309–315.PubMedGoogle Scholar
  30. Tsukamura, M., 1966. Adansonian classification of mycobacteria. — J. gen. Microbiol.15, 253–273.Google Scholar
  31. Tsukamura, M., 1967a. Differentiation of mycobacteria by utilization of nitrogen compounds as simultaneous nitrogen and carbon sources. — Am. Rev. Resp. Dis.95, 307–310.PubMedGoogle Scholar
  32. Tsukamura, M., 1967b. Identification of mycobacteria. — Tubercle, Lond.48, 311–338.Google Scholar
  33. Tsukamura, M., 1981. Numerical analysis of rapidly growing, nonphotochromogenic mycobacteria, includingMycobacterium agri (Tsukamura 1972) Tsukamura sp. nov., nom. rev. — Int. J. syst. Bact.31, 247–258.Google Scholar
  34. Wayne, L. G., Engel, H. W. B., Grassi, C., Gross, W., Hawkins, J., Jenkins, P. A., Kappler, W., Kleeberg, H. H., Krasnow, I., Nel, E. E., Pattyn, S. R., Richards, P. A., Showalter, S., Slosarek, M., Szabo, I., Tarnok, I., Tsukamura, M., Vergmann, B. & Wolinsky, E., 1976. Highly reproducible techniques for use in systematic bacteriology in the genusMycobacterium: tests for niacin and catalase and for resistance to isoniazid, thiophene 2-carboxylic acid hydrazide, hydroxylamine, and p-nitrobenzoate. — Int. J. syst. Bact.26, 311–318.Google Scholar
  35. Wood, J. W. & Ordal, E. J., 1958. Tuberculosis in Pacific salmon and steelhead trout. — Contr. Fish Commn Ore25, 1–38.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1984

Authors and Affiliations

  • C. K. Arakawa
    • 1
  • J. L. Fryer
    • 1
  1. 1.Department of MicrobiologyOregon State UniversityCorvallisUSA

Personalised recommendations