Journal of Biological Physics

, Volume 10, Issue 1, pp 31–42 | Cite as

Biochemical oscillations and the development of organization

  • R. Wiley
  • A. A. Silvidi
Article
  • 15 Downloads

Abstract

Systems of linear inhomogeneous rate equations for reaction-diffusion kinetics are solved utilizing a Green's integral operator technique. The general theory for the eigenvalues and eigenfunctions of n-component linear systems undergoing diffusion and reaction is derived. The time development of temporal oscillations of the system's reactants is studied. Systemic homogeneity is related to a quantity defined as redundancy. The latter is a function of the system's entropy and a correlation is made between redundancy and noise. It is hypothesized that this correlation may provide a tie between the time development of noise and the time development of pathology in living systems.

Keywords

Polymer Entropy Statistical Physic Linear System Time Development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby, W.R. 1956. INTRODUCTION TO CYBERNETICS. Chapman Hall Ltd., London.Google Scholar
  2. Ashby, W.R. 1960. DESIGN FOR A BRAIN. John Wiley, New York.Google Scholar
  3. Atlan, H. 1974. J. Theor. Biol.45:97.CrossRefGoogle Scholar
  4. Bourbaki, N. 1958. Theorie des ensembles: fascicule de résultats. ASEI No. 1141, Hermann and Cie, Paris.Google Scholar
  5. Chance, B.; Ghosh, A.; Hess, B.; Pye, E. 1973. BIOLOGICAL AND BIOCHEMICAL OSCILLATORS. Academic Press, New York.Google Scholar
  6. DeGroot, S.; Mazur, P. 1969. NONEQUILIBRIUM THERMODYNAMICS. North Holland, Amsterdam, London.Google Scholar
  7. Goodwin, B. C. 1964. Exp. Biol.18, 301.Google Scholar
  8. Hastings, J.W.; Schweiger, H.G. 1976. THE MOLECULAR BASIS OF CIRCADIAN RHYTHMS. Dahlem Workshop, Berlin.Google Scholar
  9. Hastings, S.P.; Tyson, J. Webster, D. Existence of Period Solutions for Negative Feedback Cellular Control Systems. Submitted for publication.Google Scholar
  10. Hedlund, L.W.; Franz, J.M.; Kenny, A.D. 1973. BIOLOGICAL RHYTHMS AND ENDOCRINE FUNCTIONS. Plenum Press, New York.Google Scholar
  11. Landau, L.; Lifshitz, E. 1969. STATISTICAL PHYSICS. Pergamon Press, New York.Google Scholar
  12. Luce, G.G. 1971. BIOLOGICAL RHYTHMS IN HUMAN AND ANIMAL PHYSIOLOGY. Dover, New York.Google Scholar
  13. Mandelbroit, B. 1977. FRACTALS: FORM, CHANCE AND DIMENSION. W.H. Freeman Co., New York.Google Scholar
  14. Nicolis, J.; Protonotarios, E.; Lianos, E. 1975. Biol. Cybernetics17, 183.Google Scholar
  15. Othmer, H.G.; Scriven, L.E. 1969. I.E.C. Fundamentals8, 302.CrossRefGoogle Scholar
  16. Pengelley, E.T. 1974. CIRCANNUAL CLOCKS. Academic Press, New York.Google Scholar
  17. Prigogine, I.; Glansdorff, P. 1971. THERMODYNAMIC THEORY OF STRUCTURE, STABILITY, AND FLUCTUATIONS. John Wiley, New York.Google Scholar
  18. Richter, C.P. 1965. BIOLOGICAL CLOCKS IN MEDICINE AND PSYCHIATRY. Dover, Springfield, Illinois.Google Scholar
  19. Saunders, D.C. 1977. AN INTRODUCTION TO BIOLOGICAL RHYTHMS. John Wiley, New York.Google Scholar
  20. Shannon, G.; Weaver, W. 1949. A MATHEMATICAL THEORY OF COMMUNICATION. University of Illinois, Urbana, Illinois.Google Scholar
  21. Thom, R. 1976. STRUCTURAL STABILITY AND MORPHOGENESIS. W.A. Benjamin, New York.Google Scholar
  22. Watson, G. 1965. Psych. Rept.17, 563.Google Scholar
  23. Wiley, R. 1977. "A Theory of Biophysical Organization." Ph. D. Dissertation. Kent State University, Kent, Ohio.Google Scholar
  24. Winfree, A. 1974. LECTURE NOTES IN BIOMATHEMATICS. Springer Verlag, Berlin.Google Scholar

Copyright information

© Forum Press, Inc 1982

Authors and Affiliations

  • R. Wiley
    • 1
  • A. A. Silvidi
    • 1
  1. 1.Biophysics Laboratory, Physics DepartmentKent State UniversityKent

Personalised recommendations