Geologische Rundschau

, Volume 78, Issue 1, pp 411–426 | Cite as

Use of biological marker distributions to study thermal history of the Permian Kupferschiefer of the Lower Rhine Basin

  • W. Püttmann
  • C. B. Eckardt
  • L. Schwark
Thermal Modeling and Evolution of Organic Matter

Abstract

In the Central European Zechstein Basin, the Permian Kupferschiefer has been deposited under marine anoxic conditions. From a lagoon at the southwest border of the Zechstein Sea, today part of the Lower Rhine Basin, 30 core samples have been studied by means of organic geochemical methods. Within the area investigated, the depth of the Kupferschiefer horizon increases from about 350 m in the south to about 1000 m in the north. Furthermore, the Kupferschiefer has been thermally affected in the western part by the intrusive body of the so-called Krefeld High. This geological situation opens the possibility to investigate differences of short term and long term temperature effects on the biological marker distribution within a sediment layer of a largely uniform faciès type. Depth related changes in the hopane, sterane and diasterene/diasterane distributions are compared to those changes induced by the Krefeld High. The composition of aromatic steroid hydrocarbons is used to discuss time-temperature effects. It is shown that depth related values of maturation parameters can only be interpreted by taking into account post-depositional tectonic events. Samples from tectonic horst structures show higher maturation values than one would expect from the present day depth.

Keywords

Hopan Diasteran Horst Structure Southwest Border Cette Situation 

Zusammenfassung

Aus dem Bereich der heutigen Niederrheinischen Bucht wurden an 30 Kernproben des Kupferschiefers organischgeochemische Untersuchungen durchgeführt. Innerhalb des Untersuchungsgebiets nimmt die Teufe des Kupferschieferhorizonts von 350 m im Süden auf über 1000 m im Norden zu. Organisch-geochemische Reifeparameter zeigen an, daß der Kupferschiefer im Westen durch den Intrusivkörper des Krefelder Gewölbes thermisch beeinflußt worden ist. Aufgrund dieser Situation bietet sich die Möglichkeit, Unterschiede im Einfluß von kurzzeitigen und langzeitigen Temperatureinwirkungen auf die Verteilung von Chemofossilien in einem faziell einheitlichen Horizont zu studieren. Teufenabhängige Variationen der Hopan-, Steran-, Diasteran- und Diasterenverteilungen lassen sich mit den zusätzlich durch den Intrusivkörper verursachten Veränderungen vergleichen. Die Verteilungsmuster der aromatischen Steroide werden zur Deutung von Zeit-Temperatur-Effekten im Verlauf der Diagenese herangezogen. Die ermittelten Meßwerte der Reifeparameter lassen sich nur interpretieren, wenn postsedimentäre tektonische Bewegungen nach der Ablagerung des Kupferschiefers in Betracht gezogen werden. Die aus Horsten stammenden Proben zeigen höhere Reifegrade an als entsprechend ihrer heutigen Teufe zu erwarten.

Résumé

Dans le bassin du Zechstein d'Europe Centrale, les Kupferschiefer permiens ont été déposés dans des conditions marines anoxiques. Dans un paléo-lagon situé à la bordure sud-ouest de la mer du Zechstein, et qui fait partie aujourd'hui du Bassin du Bas-Rhin, 30 échantillons, provenant de carottes, ont fait l'objet d'une étude de géochimie organique. Dans la région ainsi étudiée, la profondeur de l'horizon des Kupferschiefer augmente, du sud au nord, de 350 m à 1.000 m. D'autre part, les Kupferschiefer ont subi, dans leur partie ouest, l'influence thermique du corps intrusif du «Dôme de Krefeld». Cette situation géologique fournit la possibilité d'étudier les effets à long terme et à court terme de la température sur la distribution des marqueurs biologiques au sein d'un niveau sédimentaire de faciès uniforme. Les modifications dans la répartition de l'hopane, du stérane et du diastérène/diasterane en fonction de la profondeur sont comparées à celles qui sont provoquées par le Dôme de Krefeld. Les effets temps-température sont discutés à partir de la composition des hydrocarbures stéroïdes aromatiques. Les auteurs montrent que la valeur des paramètres de maturation liés à la profondeur ne peuvent être interprétés sans que l'on prenne en considération les événements tectoniques postsédimentaires. Des échantillons provenant de structures en horst montrent un degré d'évolution plus élevé que celui auquel on s'attend d'après leur profondeur actuelle.

Краткое содержание

Провели геохимическ ие исследования орга нических веществ на 30-ти про бах к ернов медистого слан ца из региона сегодняшней нижне-рейнской бухты. В исследуемой области глубина зале гания горизонта этог о сланца возрастает от 350 м на юге до свыше 1000 м на севере. Полученные ге охимические парамет ры созревания указывают на то, что эт от сланец подвергалс я на западе термическо му воздействию интру зивного тела крефельдского с вода. Это дает возможн ость изучать влияние, как к ратковременного, так и продолжительного температурного возд ействия на распредел ение хемофоссилий в гориз онте одного и того-же фация. Колебания расп ределения гопанов и с теранов не зависят от глубины залегания и их можно с читать изменениями, вызванн ыми интрузивным тело м. Распределение ароматических стеро идов привлекают для объяснения влияния э ффекта времени и темп ературы на течение процессов диагенеза. Полученны е данные параметров созреван ия можно интерпретир овать только при учете пост-седиментных тектони ческих движений. Пробы, взяты е из горстов, проявляю т более высокую степен ь созравания, чем ожид алось на основании данных и гл убине их залегания.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, P., Vandenbroucke, M. &Mandengue, M. (1976): Geochemical studies on the organic matter from the Douala Basin (Cameroon) - I. Evolution of the extractable organic matter and the formation of petroleum. Geochim. Cosmochim. Acta,40, 791–799, 8 Fig., 2 Tab., Pergamon Press, Oxford.Google Scholar
  2. Altebäumer, F. J., Leythaueser, D. &Schaefer, R. G. (1983): Effect of geologically rapid heating on maturation and hydrocarbon generation in Lower Jurassic shapes from N. W. Germany. - In: Advances in Organic Geochemistry 1981, Ed. Bjoroy M. et al., pp. 80–86, 7 Fig., John Wiley & Sons, Oxford.Google Scholar
  3. Buntebarth, G., Michel, W. &Teichmüller, R. (1982): Das permokarbonische Intrusiv von Krefeld und seine Einwirkung auf die Karbon-Kohlen am linken Niederrhein. - Fortschr. Geol. Rheinld. u. Westf.,30, 31–45, 8 Fig., 2 Tables, GLA, Krefeld.Google Scholar
  4. Clayton, J. L. &Bostick, N. H. (1986): Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike. - In: Advances in Organic Geochemistry, 1985, Eds. Leythaeuser, D. & Rullkötter, J., pp. 135–143, 7. Fig., 1 Tab., Pergamon Journals, Oxford.Google Scholar
  5. Diedel, R. &Friedrich, G. (1986): Buntmetall- und Schwerspatmineralisation im Kupferschiefer des niederrheinischen Tieflandes. - Fortschr. Geol. Rheinld. u. Westf.,34, 221–241, 10 Fig., 6 Tab., GLA, Krefeld.Google Scholar
  6. Ensminger, A., Albrecht, P., Ourisson, G. &Tissot, B. (1977): Evolution of polycyclic hydrocarbons under the effect of burial (Early Toarcian shales, Paris Basin). - In: Advances in Organic Geochemistry, 1975, Eds., Campos, R. & Goni, J., 45–52, 3 Fig., Enadimsa, Madrid.Google Scholar
  7. —,Joly, G. &Albrecht, P. (1978): Rearranged steranes in sediments and crude oils. - Tetrahedron Lett.,18, 1575–1578, 1 Fig., 2 Tab., Pergamon Press, Oxford.Google Scholar
  8. Gilbert, T. D., Stephenson, L. C. &Philp, P. (1985): Effect of a dolerite intrusion on triterpane stereochemistry and kerogen in Rundle oil shale, Australia. - Org. Geochem.,8, 163–169, 3 Fig., 2 Tab., Pergamon Press, Oxford.Google Scholar
  9. Hoyer, P. (1962): Das Verklingen der variscischen Faltung am unteren Niederhein. - Fortschr. Geol. Rheinld. u. Westf.,6, 433–446, 2 Tab., GLA, Krefeld.Google Scholar
  10. Hong, Zhi-Hua, Li, Hui-Xiang, Rullkötter, J. &Mackenzie, A. S. (1986): Geochemical applications of sterane and triterpane biological marker compounds in the Linyi Basin. - In: Advances in Organic Geochemistry, 1985, Eds., Leythaeuser, D. & Rullkötter, J., pp. 433–439, 9 Fig., 1 Tab., Pergamon Journals, Oxford.Google Scholar
  11. Koppe, I. (1980): Paläogeothermische Untersuchungen im Ruhrgebiet und am Niederrhein anhand von Inkohlungsgraden organischer Substanzen.- Dipl. Arb., Techn. Univ. Clausthal, pp. 1–120, 24 Fig., 6 Tables, Clausthal (unpublished).Google Scholar
  12. Leythaeuser, D., Altebäumer, F. J. &Schaefer, R. G. (1980): Effect of an igneous intrusion on maturation of organic matter in Lower Jurassic shales from N. W. Germany. - In: Advances in Organic Geochemistry, 1979, Eds., Douglas, A. G. & Maxwell, J. R., pp. 133–139, 4 Fig., Pergamon Press, Oxford.Google Scholar
  13. Mackenzie, A. S., Patience, R. L., Maxwell, J. R., Vandenbroucke, M. &Durand, B. (1980): Molecular parameters of maturation in the Toarcian shales, Paris Basin, France - I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. - Geochim. Cosmochim. Acta,44, 1709–1721, 11 Fig., 5 Tab., Pergamon Press, Oxford.Google Scholar
  14. —,Patience, R. L. &Maxwell, J. R. (1981a): Molecular changes and the maturation of sedimentary organic matter. - In: Origin and Chemistry of Petroleum, Proceedings of the 3rd Annual Karcher Symposium, Eds., Atkinson, G. & Zuckermann, J. J., pp. 1–31, 13 Fig., 3 Tab., Pergamon Press, Oxford.Google Scholar
  15. —,Hoffmann, C. F. &Maxwell, J. R. (1981b): Molecular parameters of maturation in the Toarcian shales, Paris Basin, France - III. Changes in aromatic steroid hydrocarbons. - Geochim. Cosmochim. Acta,45, 1345–1355, 8 Fig., 2 Tab., Pergamon Press, Oxford.Google Scholar
  16. —,Brassell, S. C., Eglinton, G. &Maxwell, J. R. (1982): Chemical fossils: The geological fate of steroids. - Science,217, 491–504, 10 Fig., 2 Tab., Washington, D. C.Google Scholar
  17. - &Mckenzie, D. P. (1983): Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. - Geol. Mag.,120, 23 Fig., 8 Tab.Google Scholar
  18. —,Disco, U. &Rullkötter, J. (1983): Determination of hydrocarbon distributions in oils and sediment extracts by gas chromatography — high resolution mass spectrometry. - Org. Geochem.,5, 57–63, 3 Fig., 2 Tab.Google Scholar
  19. —,Rullkötter, J., Welte, D. H. &Mankiewicz, P. (1985): Reconstruction of oil formation and accumulation in North Slope, Alaska, using quantitative gas chromatography-mass spectrometry. - AAPG Studies in Geology,20, Eds., Magoon, L. B. & Claypool, G. E., 319–377, 20 Fig., 14 Tab., George Banta Company, Wisconsin.Google Scholar
  20. Macquaker, J. H. S., Farrimond, P. &Brassell, S. C. (1986): Biological marker in the Rhaetian black shales of South West Britain. - In: Advances in Organic Geochemistry, 1985, Eds., Leythaeuser, D. & Rullkö tter, J., pp. 93–199, 7 Fig., 1 Tab., Pergamon Press, Oxford.Google Scholar
  21. Moldowan, J. M. &Fago, F. J. (1986): Structure and significance of a novel rearranged monoaromatic steroid hydrocarbon in petroleum. - Geochim. Cosmochim. Acta,50, 343–351, 5 Fig., 5 Tab., Pergamon Press, Oxford.Google Scholar
  22. Perregaard, J. &Schiener, E. J. (1979): Thermal alteration of sedimentary organic matter by a basalt intrusive (Kimmeridgian shales, Milne Land, East Greenland). - Chem. Geol.,26, 331–343, 4 Fig., 2 Tab., Elsevier, Amsterdam.Google Scholar
  23. Püttmann, W. &Eckardt, C. B. (1989): Influence of an intrusion on the racemization of acyclic diterpenoids in the Permian Kupferschiefer of the Lower Rhine Basin, N. W. Germany. - Org. Geochem. (in press).Google Scholar
  24. -,Merz, C. &Speczik, S. (1989): Oxidation of organic material in the Kupferschiefer and its relation to mineralization processes. - Beih. Geol. Jb. (in press).Google Scholar
  25. Riolo, J., Ludwig, B. &Albrecht, P. (1985): Synthesis of ring C monoaromatic steroid hydrocarbons in geological samples. - Tetrahedron Lett.,26, 2695–2700, 1 Fig., Pergamon Press, Oxford.Google Scholar
  26. —,Hussler, G., Albrecht, P. &Connan, J. (1986): Distribution of aromatic steroids in geological samples: Their evaluation as geochemical parameters. - In: Advances in Organic Geochemistry,1985, Eds., Leythaeuser, D. & Rullkötter, J., pp. 981–990, 11 Fig., 1 Tab., Pergamon Journals, Oxford.Google Scholar
  27. Seifert, W. K. &Moldowan, J. M. (1978): Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. - Geochim. Cosmochim. Acta,42, 77–95, 10 Fig., 10 Tab., Pergamon Press, Oxford.Google Scholar
  28. — & — (1980): The effect thermal stress on source-rock quality as measured by hopane stereochemistry. - Advances in Organic Geochemistry,1979, Eds., Douglas, A. G. & Maxwell, J. R., pp, 229–237, 5 Fig., 1 Tab., Pergamon Journals, Oxford.Google Scholar
  29. — —,Carlson, R. M. K. &Moldowan, J. M. (1983): Geomi metic synthesis, structure assignment and geochemical correlation application of monoaromatized petroleum steroids. - In: Advances in Organic Geochemistry,1981, Eds., Bjorøy et al., pp. 710–724, 10 Fig., 3 Tab., John Wiley & Sons, Chichester.Google Scholar
  30. Shi, Ji-Yang, Mackenzie, A. S., Alexander, R., Eglinton, G., Gowar, A. P., Wolff, G. A., Maxwell, J. R. (1982): A biological marker investigation of petroleums and shales from the Shengli Oilfield, The People's Republic of China. - Chem. Geol.,35, 1–31, Elsevier, Amsterdam.Google Scholar
  31. Simoneit, B. R. T., Brenner, S., Peters, K. E. &Kaplan, I. R. (1978): Thermal alteration of Cretaceous black shale by basaltic intrusions in the Eastern Atlantic. - Nature,273, 501–504, 3 Fig., 1 Tab., Macmillan Journals LTD, London.Google Scholar
  32. — (1981): Thermal alteration of Cretaceous black shale by diabase intrusions in the Eastern Atlantic — II. Effects on bitumen and kerogen. - Geochim. Cosmochim. Acta,45, 1581–1602, 13 Fig., 2 Tab., Pergamon Press, Oxford.Google Scholar
  33. Teichmüller, R. (1957): Ein Querschnitt durch den Südteil des Niederrheinischen Zechsteinbeckens. - Geol. Jb.,73, 39–50, 8 Fig., 1 Tabelle, Hannover.Google Scholar
  34. Teichmüller, M., Teichmüller, R. &Bartenstein, H. (1984): Inkohlung und Erdgas — eine neue Inkohlungskarte der Karbon-Oberfläche in Nordwestdeutschland. - Fortschr. Geol. Rheinl. u. Westf.,32, 11–34, 3 Fig., 3 Tab., GLA, Krefeld.Google Scholar
  35. Tissot, B. P. &Welte, D. H. (1984): Petroleum Formation and Occurrence. - 2nd. Edition, pp. 603, Springer Verlag, Berlin.Google Scholar
  36. Waples, D. W. (1980): Time and temperature in petroleum formation: Application of the Lopatin's method to petroleum exploration. - Am. Ass. Pet. Geol. Bull.,64, 916–926, 13 Fig., 5 Tab.Google Scholar
  37. Wolf, R. (1985): Tiefentektonik des linksrheinischen Steinkohlengebietes. - In: Beiträge zur Tiefentektonik westdeutscher Steinkohlenlagerstätten, (ed. GLA, Krefeld), 105–167, 37 Fig., 3 Tab., GLA, Krefeld.Google Scholar
  38. Ziegler, P. A. (1982): Geological Atlas of Western and Central Europe. - (ed. Shell International Petroleum Shell International Petroleum Maatschappij B. V.), 40 Enclosures.Google Scholar

Copyright information

© Ferdinand Enke Verlag Stuttgart 1989

Authors and Affiliations

  • W. Püttmann
    • 1
  • C. B. Eckardt
    • 1
  • L. Schwark
    • 1
  1. 1.Lehrstuhl für Geologie, Geochemie und Lagerstätten des Erdöls und der KohleRWTH AachenAachenFRG

Personalised recommendations