Skip to main content
Log in

Sandstone diagenesis and porosity modification during basin evolution

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Die bestimmenden Faktoren von Sandsteinen als mögliche Speichergesteine und von Schiefern als Bildungsort von Kohlenwasserstoffen liegen in den Verhältnissen der primären Fazieausbildungen der Gesteine und deren Diagenesegeschichte. Korn-Parameter (Sortierung, Pakkungsdichte und Zusammensetzung) und Netto-Auflast steuern mechanische Kompaktion und Drucklösung. Diese sind für Porositätsreduzierungen verantwortlich, die bis zu einem bestimmten Grad abgeschätzt werden können. Der Einfluß von Lösungserscheinungen für die Bildung sekundären Porenraums, der hier definiert werden konnte und die Vorgänge, die Lösungsphasen iniziieren, bilden den zentralen Punkt der Diskussion.

Größte Bedeutung in der Diagenese klastischer Sedimente kommt dem Charakter der Grundwasserbewegungen und deren Eigenschaft im Bereich des Stofftransportes zu. Daten der Petrographie und der Geochemie ergeben für die Speichergesteine der Nordsee, daß der Hauptanteil der Lösung von Feldspat und Muskovit, ein Vorgang, der zur Bildung von Kaolinit führte, frühdiadenetisch unter Einfluß von Süßwasser stattfand. Aufgrund neuerer Kalkulationen kann die Bedeutung saurer Lösungen, die man von dem Bildungsgestein hergeleitet, für die sekundäre Porosität der Speichergesteine ausgeschlossen werden. Mathematische Berechnungen räumen dem Einfluß thermaler Konvektion in sedimentären Becken meist geringe Bedeutung zu, es sei denn es gibt große laterale Unterschiede des geothermischen Gradienten. Die geochemische Analyse des Porenwassers ergibt vertikale und horizontale Zonierungen im Chemismus des Wassers. Diese Tatsache widerspricht der These einer großräumischen Konvektion, da in diesem Fall die Diagenese-Prozesse unter Bedeckung bei relativ einheitlicher chemischer Zusammensetzung ablaufen würden.

Ein besseres Verständnis der diagenetischen Vorgänge wird die Abhängigkeit des Verhältnisses von Porosität zur Tiefe, der Verteilung des Hohlraumvolumens und der Hohlraumgeometrie in Speichergesteinen erleichtern.

Diskutiert werden Zusammenhänge von Porosität und Tiefe, die Daten an Stellen vor der Küste Norwegens und anderen Becken entnommen wurden. Für Tiefen zwischen einem und fünf Kilometern scheinen empirische, lineare Geraden am besten die Verhältnisse zu verdeutlichen. Regional begrenzt kann der lineare Porositätsgradient als eine Funktion der Gradienten von Mineralzusammensetzung, Temperatur und Druck beschrieben werden. Primäre Porosität ist am besten in Sandsteinen mit einem hohen Anteil an stabilen Komponenten (z. B. Quatzarenite) bis zu einer Tiefe von drei oder vier Kilometern erhalten.

Drucklösungserscheinungen sind für die zunehmende Abnahme der Porosität in größeren Tiefen verantwortlich. Dabei scheinen sekundäre und intergranulare Porenräume zwischen Feldspatkörnern relativ zu primären Porenräumen zwischen Quartzkörnern stabiler zu sein.

Abstract

The properties of sandstones as potential reservoirs and shales as source rocks depend on primary facies relationships and diagenesis. Porostiy loss due to mechanical compation and pressure solution is essentially a function of grain parameters (sorting, packing and composition) and net overburden stress. The porosity loss can be predicted to a certain extent. The importance of secondary porosity caused by dissolution of framework grains and cements has been fully recognized. The discussion has focused on the processes causing such dissolution and to what extent it can cause net increase in porosity.

The most critical factor in clastic diagenesis is the nature of porewater flow and the degree of mass transfer taking place as a result of this. In the North Sea reservoir rocks, petrographic and geochemical evidence suggest that most of the leaching of feldspar and mica resulting in the formation of kaolinite occurred early during fresh wather flushing. Recent calculations indicate that »acids« derived from source rocks are inadequate to explain the secondary porosity observed in reservoir rocks. Mathematical modelling suggests that thermal convection is of limited importance in sedimentary basins, except where there are high lateral changes in geothermal gradients. Evidence from porewater geochemistry suggests that porewaters in sedimentary basins are often stratified or compartmentalized in a way which is inconsistent with large scale convection or compactional flow, making it necessary to assume that diagenetic reactions are relatively isochemical during deeper burial.

A better understanding of the diagenetic reactions will help us to improve our predictions about porosity/depth relations, pore size, and pore geometry distribution in reservoir rocks.

Porosity depth trends from offshore Norway and published data from other basins are discussed. Empirical linear best fit lines are found to illustrate the relationship quite well for depths between one and five km. Within a specific region, the linear porosity gradient is a function of mineral composition and of temperature and pressure gradients. Primary porosity tends to be best preserved in sandstones with high proportions of stable grains (e. g. in quartz arenites) down to about 3 or 4 km. At greater depth, porosity loss is accelerated due to increased pressure solution. Secondary and primary porosity adjacent to feldspar grains then tends to be selectively preserved relative to primary pores between quartz grains.

Résumé

Les facteurs qui caractérisent des grès en tant que réservoirs potentiels d'hydrocarbures et des shales en tant que roches-mères sont les relations facielles primaires et la diagenèse. La perte de porosité due à la compaction mécanique et aux impressionnements («pressure-solution») est fonction essentiellement des paramètres des grains (classement, ordonnance et composition) et des contraintes dues à la surcharge. La perte de porosité peut être prévue dans une certaine mesure. On connaît l'importance de la porosité secondaire provoquée par la dissolution des grains et des ciments. La discussion est centrée sur les processus responsables de cette dissolution et sur leur incidence dans l'accroissement net de la porosité.

Le facteur le plus critique dans la diagenèse des élastiques est la nature du flux d'eau intersticielle et le degré de transfert de matière qui en résulte. Dans les roches-magasins de la Mer du Nord, les observations pétrographiques et géochimiques montrent que la plus grande partie de l'altération en kaolin du feldspath et du mica s'est produite lors du lessivage par de l'eau douce. Selon des calculs récents, les «acides» dérivés des roches-mères ne peuvent expliquer la porosité secondaire des roches-magasins. La modélisation mathématique suggère que la convection thermique ne joue qu'un rôle subordonné dans un bassin de sédimentation, sauf aux endroits de forte variation latérale du gradient géothermique. L'étude géochimique des eaux intersticielles montre que dans les bassins sédimentaires, elles sont souvent stratifiées ou compartimentées d'une manière qui est incompatible avec une convection à grande échelle car un tel phénomène impliquerait des réactions diagénétiques relativement isochimiques.

Une meilleure compréhension des réactions diagénétiques doit nous aider à améliorer nos prévisions relatives à la relation porosité/profondeur, et à la répartition de la taille et de la forme des pores dans les roches-magasins.

Une discussion est présentée à propos de la relation porosité/profondeur, à partir des données recueillies off-shore en Norvège et de données publiées provenant d'autres bassins. Il apparaît qu'entre 0 et 5 km de profondeur, des courbes empiriques linéaires rendent le mieux compte de ces relations. Dans une région donnée, le gradient linéaire de porosité est fonction de la composition minéralogique et des gradients de pression et de température. La porosité primaire tend à être bien préservée dans les grès riches en grains stables (p. ex. dans les arénites quartziques) jusqu'à une profondeur de 3 à 4 km. Plus bas, la perte de porosité s'accélère en raison des phénomènes d'impressionnement. Dans ces conditions profondes, les pores primaires et secondaires adjacents aux grains de feldspath semblent relativement plus stables que les pores primaires situés entre les grains de quartz.

Краткое содержание

Свойства песчаника, к ак потенциального ре зервуара нефти, и сланцев, как ее материнской породы, зависят от исходных с оотношений фация пор од и процессов диагенеза, происходя щих в них. Гранулометр ический состав /распределени е зерен по крупности, плотность упаковки и состав/ и нетто нагруз ки определяют механическое уплотн ение и выщелачивание пород при сжатии. Эти ж е факторы ответствен ны за уменьшение пористос ти, которую удается оц енить только до известной с тепени. Полностью рас крыто влияние явлений раст ворения при образова нии вторичных поровых пространств и цемента. Обсуждаютс я процессы, вызывающие растворение и влияни е его на повышение пори стости пород. Большое значение при диагенеза кластичес ких седиментов отводитс я характеру передвиж ения грунтовых вод и свойствам в реги оне переноса материа ла. Данные петрографии и геохимии указывают н а то, что основная масса пород коллекторов северно го моря состоит из полевого ш пата и мусковита. На ра нних стадиях диагенеза по д воздействием пресн ой воды начинается растворение и образу ется каолинит. На осно вании новейших подсчетов в лияния кислых раство ров на появление вторичн ой пористости в пород ах коллектора можно исключить. Согл асно математическим рассчетам влияние те рмической конвекции в осадочных бассейнах обычно не в елико, если в латераль ном направлении не имеет ся больших различий геотермического градиента. При рассмотрении дан ных геохимического а нализа поровых вод установл ено разделение этих в од по их химизму на зоны, как по вертикали, так и по гор изонтали. Этот факт противореч ит тезису о конвекции на больших расстояниях, т.к. в последнем случае процессы диагенеза протекали бы в водах сравнитель но одинакового химичес кого состава. Диагенетические про цессы можно лучше пон ять, если учитывать завис имость пористости от глубины, величину пор и распре деление пор в породах-коллекторах. Обсуждается зависимость пористо сти пород от глубины залегания их на примерах результа тов исследования проб, взятых у побереж ья Норвегии и в других бассейнах. Для глубин от 1 до 5 км соотношение это соответствует линей ной эмпирической пря мой. Причем региональный линейн ый градиент пористос ти можно представить, ка к функцию градиента минералогического состава, температуры и давления. Первичная пористост ь лучше всего сохраня ется до глубины от 3 до 4 км в пес чанистых отложениях. С большой долей примес и стабильных компоне нтов, как напр.: кварц-аренит а. Процессы растворен ия под воздействием давлен ия ответственны за по нижение пористости пород с гл убиной. При этом, кажет ся,

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aagaard, P. &Helgeson, H. C. (1982): Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, I, Theoretical considerations. - Am. Jour. Sci.,282, 237–285.

    Google Scholar 

  • Almon, W. R. &Davies, D. K. (1981): Formation damage and the crystal chemistry of clays. - In: Longstaffe, F. J. (ed.): Clays and the Resource Geologist, Min. Ass. Can., Short Course,7, 81–103.

  • Atwater, G. I. &Miller, E. E. (1965): The effect of decrease in porosity with depth on future development of oil and gas reserves in South Louisiana. - Am. Ass. Petrol. Geol., Bull.,49, 334. (Abstr.)

    Google Scholar 

  • Back, W., Hanshaw, B. B., Pyle, T. E., Plummer, L. N., &Weidie, A. E. (1979): Geochemical significance of groundwater discharge and carbonate solution to the formation Calete Xel Ha, Quintana Roo, Mexico.- Water Resources Resw.,15, 1521–1531.

    Google Scholar 

  • Beard, D. C. &Weyl, P. K. (1973): Influence of texture on porosity and permeability of unconsolidated sand.- Am. Ass. Petrol. Geol., Bull.,57, 349–369.

    Google Scholar 

  • Bethke, C. M. &Altaner, S. P. (1986): Layer-by-layer mechanism of smectite illitization and application to a new rate law. - Clays and Clay Miner.,34, 136–145.

    Google Scholar 

  • Harrison, W. J., Upson, C. &Altaner, S. P. (1988): Supercomputer analysis of sedimentary basins. - Science,239, 261–267.

    Google Scholar 

  • Berglund, L. T., Augustson, J., Ferseth, R., Gjelberg, J. &Rambergmoe, H. (1986): The evolution of the Hammerfest Basin. - Spencer, A. M. et al., (eds): Habitat of hydrocarbons on the Norwegian continental shelf. 319–338, Graham & Trotman Ltd., London.

    Google Scholar 

  • Bjørlykke, K. (1979): Cementation of sandstones. Jour. Sed. Petr.,49, 1359.

    Google Scholar 

  • — (1980): Clastic diagenesis and basin evolution. - Revista del Instituo Geologas, Diputacion Provincial Universidad de Barcelona,34, 21–44.

    Google Scholar 

  • - (1983): Diagenetic reactions in sandstones. - In: Parker, A. & Shellwood, B. W., (eds.): Sediment Diagenesis. 169–213, Reidel Publishing Company.

  • - (1984): Formation of secondary porosity: How important is it? - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol., Mem.,37, 277–286.

  • —,Elverhøi, A. &Malm, A. O. (1979): Diagenesis in the Mesozoic sandstones from Spitsbergen and the North Sea: A comparison. - Geolo. Rundsch.,68, 1151–1171.

    Google Scholar 

  • —,Aagaard, P., Dypvik, H., Hastings, D. S. &Harper, A. S. (1986): Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid Norway. - In: Spencer, A. M. et al., (eds): Habitat of hydrocarbons on the Norwegian continental shelf, 275–286, Graham & Trotman Ltd., London.

    Google Scholar 

  • - &Brendsdal, A. (1986): Diagenesis of the Brent Sandstone in the Statfjord Field. - In: Gautier, D. L., (ed.): Roles of organic matter in sediment diagenesis. Soc. Econ. Paleontol. Mineral., Spec. Publ.,38, 157–167.

  • — &Harper, A. S. &Brendsdal, A. Mo, A. &Palm, E. (1988): Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. - Marine Petrol. Geol.,5, 338–351.

    Google Scholar 

  • Blatt, H. (1979): Diagenetic processes in sandstone. - In: Scholle, P. A. & Schluger, P. R., (eds.): Aspects of diagenesis. Soc. Econ. Paleontol. Mineral., Spec. Publ.,26, 141–157.

  • Bloch, S., Suchecki, R. K., Duncan, J. R. &Bjørlykke, K. (1986): Porosity prediction in quartz-rich sandstone: Middle Jurassic, Haltenbanken Area. Offshore central Norway. - Am. Ass. Petrol. Geol., Bull.,40, 567. (Abstr.)

    Google Scholar 

  • Boer, R. B. de (1977): On the thermodynamics of pressure solution — interaction between chemical and mechanical forces. - Geochim. Cosmochim. Acta,41, 249–256.

    Google Scholar 

  • Boles, J. R. (1981): Clay diagenesis and effects on sandstone diagenesis. - In: Longstaffe, F. J. (eds.): Clays and the resource geologist, Mineral. Ass. Can., Short Course,7, 148–168.

  • — (1982): Active albitization of plagioclase, Gulf Coast Tertiary. - Am. Jour. Sci.,282, 165–180.

    Google Scholar 

  • - (1984): Secondary porosity reaction in the Stevens Sandstone, San Joaquin Valley, California. - In: McDonald, D. A & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol., Mem.,37, 217–224.

  • — &Franks, S. G. (1979): Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. - Jour. Sed. Petr.,49, 55–70.

    Google Scholar 

  • — &Ramseyer, K. (1987): Diagenetic carbonate in a Miocene sandstone reservoir, San Joaquin Basin, California. - Am. Ass. Petrol. Geol., Bull,71, 1475–1487.

    Google Scholar 

  • Burley S. D. (1986): The development and destruction of porosity within upper Jurassic reservoir sandstones of the Piper and Tartan fields, outer Moray Firth, North Sea. - Clay Minerals,21, 649–694.

    Google Scholar 

  • Burst, J. E. (1976): Argillaceous sediment dewatering. - Ann. Rev. Earth Planet. Sci.,4, 293–318.

    Google Scholar 

  • Bøgli A., (1964): Mischungskorrosion, ein Beitrag zum Verkarstungsproblem. Erdkunde,18, 83–92.

    Google Scholar 

  • Clayton, R. N., Friedman, I., Graf, I., Mayeda K., Meents, W. F. &Shimp, N. F. (1966): The origin of saline formation waters. - Jour. Geophys. Res.,71, 3869–3882.

    Google Scholar 

  • Curtis, C. D. (1978): Possible links between sandstone diagenesis and depth related geochemical relations occurring in enclosing mudstones. - Jour. Geol. Soc. Lond.,135, 107–117.

    Google Scholar 

  • — (1983): Link between aluminium mobility and destruction of secondary porosity. - Am. Ass. Petrol. Geol., Bull.,63, 380–384.

    Google Scholar 

  • Hughes, C. R., Whiteman, J. A. &Whittle, C. K. (1985): Compositional variation within some sedimentary chlorites and some comments on their origin. - Miner. Magaz.,49, 375–386.

    Google Scholar 

  • Dahlberg, E. C. (1982): Applied hydrodynamics in petroleum exploration. - Springer-Verlag, 161 pp.

  • Davis, S. H., Rosenblat, S., Wood, J. R. &Hewett, T. A. (1985): Convective fluid flow and diagenetic patterns in domed sheets. - Am. Jour. Sci.,285, 207–223.

    Google Scholar 

  • Dickey, P. A. (1979): Petroleum development geology; Division of Petroleum publishing Co., Tulsa, OK 74101, U.S.A., 389 pp.

    Google Scholar 

  • Dickinson W. R. (1970): Interpreting detrital modes of greywacke and arkose. - Jour. Sed. Petr.,40, 695–707.

    Google Scholar 

  • Dreybodt, W. (1981a): Kinetics of the dissolution of calcite and its applications to karstification. - Chem. Geol.,31, 245–269.

    Google Scholar 

  • — (1981b): Mixing corrosion in CaCO3-CO2-H2O systems and its role in the karstification of limestone areas. - Chem. Geol.,32, 221–236.

    Google Scholar 

  • Durney, D. W. (1976): Pressure Solution and crystallization deformation. - Royal Soc. Lond., Phil. Trans., Ser. A,283, 229–240.

    Google Scholar 

  • Dypvik, H. (1983): Clay mineral transformations in Tertiary and Mesozoic sediments from North Sea. - Am. Ass. Petrol. Geol., Bull.,67, 160–165.

    Google Scholar 

  • Egeberg, P. K. &Aagaard, P. (1989): Origin and evolution of formation water from oil fields on the Norwegian Shelf. - Applied Geochemistry, in press vol. 4.

  • Ellis, A. L. &Lee, C. H. (1919): Ground waters of western San Diego County, California. - U.S. Geol. Surv., Water Supply Paper,446, 121–123.

    Google Scholar 

  • England, W. A., Mackenzie, A. S., Mann, D. M. &Quigley, T. M. (1987): The movement and entrapment of petroleum fluids in the subsurface. - Jour. Geol. Soc. Lond.,144, 327–347.

    Google Scholar 

  • Fisher, R. S. (1982): Origin and evolution of formation water from Eocene Wilcox sandstones, south-central Texas. - Geol. Soc. Am., Abstr. with Programs,14, 489. (Abstr.)

    Google Scholar 

  • Fletcher, R. C. &Pollard, D. D. (1981): Anticrack model for pressure solution surfaces. - Geology,9, 419–424.

    Google Scholar 

  • Foscolos, A. E. &Powell, T. G. (1980): Mineralogical and Geochemical transformation of clays during catagenesis and their relation to oil generation. - In: Miall, A. D. (ed.): Facts and principles of world petroleum occurrence. Can. Soc. Petrol. Geol., Mem.,6, 153–172.

  • Franks, S. G. &Forester, R. W. (1984): Relationships among secondary porosity, pore-fluid chemistry and carbon dioxide, Texas Gulf Coast.- In: McDonald, D. A. & Surdam, R. S., (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol., Mem.,37, 63–80.

  • Fraser, H. J. (1935): Experimental study of porosity and permeability in clastic sediments. - Jour. Geol.,43, 910–1010.

    Google Scholar 

  • Füchtbauer, H. (1967): Influence of different types of diagenesis on sandstone porosity. - The World Petrol. Congr. Proc., 353–369.

  • — (1974): Some problems of diagenesis in sandstones. Bull., Centre Rech. Pau, SNPA.,8, 391–403.

    Google Scholar 

  • — (1979): Die Sandsteindiagenese im Spiegel der neueren Literatur. Geol. Rundsch.,68, 1125–1151.

    Google Scholar 

  • - (1983): Facies controls on sandstone diagenesis. - In: Parker, A. & Sellwood, B. W, (eds.): Sediment diagenesis. Reichel Publishing Company, 269–288.

  • Gaither, A. (1953): A study of porosity and grain relationships in experimental sands. - Jour. Sed. Petr.,23, 180–195.

    Google Scholar 

  • Garbarini, J. M. &Carpenter, A. B. (1978): Albitization of plagioclase by oil field brines. - Geol. Soc. Am., Abstr.,10, 406. (Abstr.)

    Google Scholar 

  • Gautier, D. L. &Schmoker, J. W. (1987): Dependence of porosity upon thermal maturity: A test of deeply buried sandstones. - Abstract in Prediction of Reservoir Quality Through Chemical Modeling, Am. Ass. Petrol. Geol., Research Conference, Utah.

  • Galloway, W. E. (1974): Deposition and diagenetic Alteration of sandstone in North East Pacific arc-related basins: Implications for greywacke genesis. - Geol. Soc. Am. Bull.,85, 379–390.

    Google Scholar 

  • Gieskes, J. M. (1981): Deep-sea drilling interstitial water studies: implications for chemical alteration of the oceanic crust. Layer 1 and 4:- In: Warme et al., (eds.): Soc. Econ. Paleontol. Mineral., Spec. Publ.,32, 149–167.

  • Giles, M. R. (1987): Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs.- Marine Petrol. Geol.,4, 188–204.

    Google Scholar 

  • Gjeldsvik, N. &Bjørkum, P. A. (1984): The influence of mica on quartz during diagenesis: an example from the North Sea. - Clay Miner. Soc., 33rd Ann. Clay Min. Conf., Oct. 1984, Baton Rouge, La. (Abstr.).

  • Gluyas, J. G. (1985): Reduction and prediction of sandstone reservoir potential, Jurassic, North Sea. - Royal Soc. Lond., Phil. Trans., Ser. A,315, 187–202.

    Google Scholar 

  • Graton, L. C. &Fraser, H. J. (1935): Systematic packing of spheres, with particular relation to porosity and permeability. - Jour. Geol.,43, 785–909.

    Google Scholar 

  • Hamilton, E. L. &Menard, H. W. (1956): Density and porosity of seafloor surface sediments off San Diego, California. - Am. Ass. Petrol. Geol., Bull.,40, 754–761.

    Google Scholar 

  • Hancock, N. J. (1978a): Possilbe causes of Rotliegend sandstone diagenesis in northern West Germany. - Jour. Geol. Soc. Lond.,135, 35–40.

    Google Scholar 

  • — (1978b): Discussion on pressure solution. - Jour. Geol. Soc. Lond.,135, 134.

    Google Scholar 

  • Harrison, W. J.,McCallister, R. H. &Shettel, D. L. (1987): A diagenetic model for dolomite formation in Latrobe group sandstone. Gipsland Basin, Australia. - Am. Ass. Petrol. Geol., Research conference on »Prediction of Reservoir quality through chemical modellin.« Utah, June 1987. (Abstr.)

  • Hayes, J. B. (1970): Polytypism of chlorite in sedimentary rocks. - Clays and Clay Minerals.,18, 285–306.

    Google Scholar 

  • - (1979): Sandstone diagenesis — the hole truth. - In: Scholle, P. A. & Schluger, P. R. (eds.): Aspects of diagenesis. Soc. Econ. Paleontol. Mineral., Spec. Publ.,26, 127–139.

  • Hearn, C. L.,Ebanks, W. J.,Tye, R. S. &Ranganathan, V. (1984): Geological factors influencing reservoir performance of the Hartzog Draw Field, Wyoming. - Jour. Petr. Tech., 1335–1344.

  • Helmold, K. P. &Kamp, P. C. V. (1984): Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez Mountains, California. - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis, Am. Ass. Petrol. Geol., Mem.,37, 239– 276.

  • Hem, J. D. (1985): Study and interpretation of the chemical characteristics of natural water. - U. S. Geol. Surv., Water-Supply Paper,2254, 263 pp.

  • Hoffman, J. &Hower, J. (1979): Clay mineral assemblages as low-grade metamorphic geothermometers, application to the thrust faulted disturbed belt of Montana, U. S. A. - In: Scholle, P. A. & Schluger, P. R., (eds.): Aspects of diagenesis. Soc. Econ. Paleontol. Mineral. Spec. Publ.,26, 55–79.

  • Home, P. C. (1987): Ula. - In: Spencer et. al. (eds.): Geology of the Norwegian oil and gas fields. 143–151. Graham & Trotman Ltd. London.

    Google Scholar 

  • Houseknecht, D. W. (1987): Assessing the relative importance of compaction processes and cementation to reduction of porosity in sanstones. - Am. Ass. Petrol. Geol., Bull.,71, 633–642.

    Google Scholar 

  • Hower, J. (1981): Shale diagenesis. - In: Longstaffe, F. J., (ed.): Clays and the resource gelogist.- Mineral. Ass. Can., Short Course,7, 60–79. Calgary.

    Google Scholar 

  • —,Eslinger, E. V., Hower, M. E. &Perry, E. A. (1976): Mechanism of burial metamorphism in argillaceous sediment: 1. Mineralogical and chemical evidence. - Am. Geol. Soc, Bull.,87, 725–737.

    Google Scholar 

  • Hurst, A. &Irwin, H. (1982): Geological modelling of clay diagenesis in sandstones. - Clay Minerals,17, 5–22.

    Google Scholar 

  • Hurst, A. &Archer, J. S. (1986): Some applications of clay mineralogy to reservoir description. - Clay Minerals,21, 811–826.

    Google Scholar 

  • Irwin, H., Curtis, C. &Coleman, M. (1977): Isotopic evidence for source of diagenetic carbonates formed during burial of organic rich sediments. - Nature,269, 209–213.

    Google Scholar 

  • — &Hurst, A. (1983): Application of geochemistry to sandstone reservoir studies. - In: Brooks, J. (ed.): Petroleum geochemistry and exploration of Europe. Geol. Soc. Lond., Spec. Publ., 127–146. Oxford.

    Google Scholar 

  • Johnson, M. D., Mackey, T. A. &Stewart, D. J. (1985): The Fulmar oil field (Central North Sea): Geological aspects of its discovery, appraisal and development. - Marine Petrol. Geol.,3, 99–175.

    Google Scholar 

  • Jones, M. E. &Addis, M. A. (1985): On changes in porosity and volume during burial of argillaceous sediments. - Marine Petrol. Geol.,2, 247–253.

    Google Scholar 

  • Jourdan, A., Thomas, M., Brevart, O., Robson, P., Sommer, F. &Sullivan, M. (1987): Diagenesis as the control of the Brent Sandstone reservoir properties in the Greater Alwyn area (East Shetland Basin). - In: Brooks, J. & Glennie, K., (eds.) Petroleum Geology of North West Europe. 951–961. Graham & Trotmann Ltd., London.

    Google Scholar 

  • Kantorowicz, J. D.,Bryant, I. D., &Dawans, J. M. (1987): Controls on the geometry and distribution of carbonate cements in Jurassic sandstones: Bridport Sands, southern England and Viking Group, Troll Field, Norway. - In: Marshall, J. D., (ed.): Diagenesis of sedimentary sequences. Geol. Soc. Lond., Spec. Publ.,36, 103–118.

  • Keene, J. B. (1975): Cherts and porcellanites from the North Pacific, DSDP Leg 32. - In: Larson, R. L., et al., (eds.) Init. Repts. Deep Sea Drilling Project,32, 429–507.

  • Kittilsen, J. B. (1988): Sandproduksjon fra oljereservoarer belyst ved en sedimentologisk og diagenetisk undersokelse av materiale fra Statfjord fettet. - Unpubl. Cand. scient. thesis, Univ. Oslo, 194 p. + illustr.

  • Krumbein, W. C. &Graybill, F. A. (1965): An introduction to statistical models in geology. - McGraw-Hill Book Company, New York, 475 pp.

    Google Scholar 

  • Larese, R. E., Haskell, N. L., Prezbindowski, D. R. &Beju, D. (1984): Porosity development in selected Jurassic sandstones from Norwegian and North Seas, Norway — An overview. - In: Spencer, A. M. et al. (eds.): Petroleum Geology of the North European Margin, 61–80. Graham & Trotman Ltd., London.

    Google Scholar 

  • Lindquist, S. J. (1977): Secondary porosity development and subsequent reduction over pressured Frio Formation Sandstone (Oligocene), South Texas. - Gulf Coast Ass. Geol. Soc. Trans.,27, 99–107.

    Google Scholar 

  • Longstaffe, F. J. (1984): The role of meteoric water in diagenesis of shallow sandstones, stable isotope studies of the Milk River aquifer and gas pool. - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol., Mem.37, 81–98.

  • — (1986): Oxygen isotope studies of diagenesis in the basal Belly River Sandstone, Pembina I-Pool, Alberta. - Jour. Sed. Petr.,56, 78–88.

    Google Scholar 

  • Loucks, R. G., Bebout, P. G. &Galloway, W. E. (1977): Relationship of porosity formation and preservation to sandstone consolidation history. Gulf Coast Lower Tertiary Frio Formation. - Gulf Coast Ass. Geol. Soc., Trans.,27, 109–120.

    Google Scholar 

  • —,Douge, M. M. &Galloway, W. E. (1979): Importance of secondary leached porosity in Lower Tertiary Sandstone reservoirs along the Gulf Coast. - Gulf Coast Ass. Geol. Soc., Trans.,29, 164–171.

    Google Scholar 

  • — (1980): Importance of secondary leached porosity in Lower Tertiary sandstone reservoirs along the Gulf Coast. - Bureau of Economic Geology, Austin, Univ. Texas, Geological Ciruclar, 80–102.

    Google Scholar 

  • -Dodge M. M. &Land, L. S. (1984): Regional controls on diagenesis and reservoir quality in Lower Tertiary sandstones along the Texas Gulf Coast. - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. petrol. Geol., Mem.37, 15–45.

  • Lundegard, P. D., &Land, L. S. (1986): Carbon dioxide and organic acids: Their role in porosity enhancement and cementation, Paleogene of the Texas Gulf Coast. - In: Gautier, D. L., (ed.): Roles of organic matter in sediment diagenesis. Soc. Econ. Paleontol. Mineral., Spec. Publ.,38, 129–146.

  • Lønøy, A., Akselsen, J. &Rønning, K. (1986): Diagenesis of a deeply buried sandstone reservoir: Hild field, Northern North Sea. - Clay Minerals,21, 497–511.

    Google Scholar 

  • Malm, O. A., Christensen, O. B., Furnes, H., Løvlie, R. Rueslatten, H. &,Østby, K. L. (1984): The Lower Tertiary Balder Formation: An organogenic and tuffaceous deposit in the North Sea Region. - In: Spencer, A. M. et al. (eds.): Petroleum Geology of the North European Margin, 149–170. Graham & Trotman Ltd., London.

    Google Scholar 

  • Manheim, F. T. (1967): Evidence for submarine discharge of water on the Atlantic continental slope of Southern United States and suggestions for further research. - Trans. New York Acad. Sci.,11, 839–853.

    Google Scholar 

  • — &,Paull, C. K. (1981): Patterns of groundwater salinity changes in deep continental Atlantic Coast of the USA. - Jour. Hydrol.,54, 95–105.

    Google Scholar 

  • Markert, J. C. &Al-Shaieb, Z. (1984): Diagenesis and evolution of secondary porosity in Upper Minnelusa Sandstones, Powder River Basin, Wyoming. - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol., Mem.,37, 367–390.

  • McBride, E. F. (1977): Secondary porosity importance in sandstone reservoirs in Texas (short note). Gulf Coast Ass. Geol. Soc. Trans.,27, 121–122.

    Google Scholar 

  • Moncure, G. K.,Lahann, R. W. &Siebert, R. M. (1984): Origin of secondary porosity and cement in a sandstone/shale sequence from Frio Formation (Oligocene). - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol., Mem.,37, 151–162.

  • Morey G. W., Fournier, R. C. &Rowe, J. J. (1962): The solubility of quartz in water in the temperature interval from 25–300 °C. - Geochim. Cosmochim. Acta.,26, 1029–1043.

    Google Scholar 

  • Nagtegaal, P. J. C. (1978): Sandstone-framework instability as a function of burial diagenesis. - Jour. Geol. Soc. Lond.,135, 101–105.

    Google Scholar 

  • Nedkvitne, T. (1987): Klastisk diagenese og dannelse av sekundáer porositet i Brentgruppen på Huldrafeltet. - Unpubl. Cand. Scient. thesis, Univ. Oslo, 105 pp.

  • Nipen, O. (1987): Oseberg. - In: Spencer et. al. (eds.): Geology of the Norwegian oil and gas fields. 379–387. Graham & Trotman Ltd. London.

    Google Scholar 

  • Olaussen, S., Dalland, A., Gloppan, T. G. &Johannessen, E. (1984): Depositional environment and diagenesis of Jurassic reservoir sandstones in the eastern part of Troms I area. - In: Spencer, A. M. et al. (eds.): Petroleum Geology of the North European Margin, 61–79. Graham & Trotman. Ltd., London.

    Google Scholar 

  • Pallatt, N., Wilson, M. H. &McHardy, W. J. (1984): Te relationship between permeability and the morphology of diagenetic illite in reservoir rocks. - Jour. Petr. Tech., Des.,1984, 2225–2227.

    Google Scholar 

  • Palmer, S. N. &Barton, M. E. (1987): Porosity reduction, microfabric and resultant lithification in UK uncemented sands. - In: Marshall, J. D. (ed.): Diagenesis of sedimentary sequences. Geol. Soc. Lond. Spec. Publ.,36, 29–40.

  • Perry E. &Hower, J. (1970): Burial diagenesis in Gulf Coast pelitic sediments. - Clays and Clay Minerals.,18, 165–177.

    Google Scholar 

  • Pryor, W. A. (1973): Permeability-porosity patterns and variations in some Holocene sand bodies. - Am. Ass. Petrol. Geol., Bull.,57, 162–189.

    Google Scholar 

  • Ranganathan, V. &Tye, R. S. (1986): Petrography, diagenesis, and facies controls on porosity in Shannon Sandstone, Harzog Draw Field, Wyoming. - Am. Ass. Petrol. Geol., Bull.,70, 56–69.

    Google Scholar 

  • Riecke E. (1894): Über das Gleichgewicht zwischen einem festen, homogen deformierten Körper und einer flüssigen Phase. Insbesondere über die Depression des Schmelzpunktes durch einseitige Spannung. - Nachr. Kgl. Ges. Wiss. Gö ttingen, Mathm. + Naturwiss., Kl.4, 278–284.

    Google Scholar 

  • Rieke, H. H. &Chilingarian, G. V. (1974): Compaction of argillaceous sediments, Elsevier, Amsterdam, 424 pp.

    Google Scholar 

  • Rogers, J. J. &Head, W. B. (1961): Relationships between porosity, median size and sorting coefficients of synthetic sands. - Jour. Sed. Petr.,31, 467–470.

    Google Scholar 

  • Rutter, E. H. (1976): The kinetics of rock deformation by pressure solution. - Royal Soc. Lond., Phil. Trans., Ser. A.,283, 203–219.

    Google Scholar 

  • Saigal, G. C. (1985): Petrological studies of Devonian rocks in Scotland and Cretaceous rocks in Canada. - Ph. D. Thesis, St. Andrews Univ., 125 pp.

  • — &Bjørlykke, K. (1987): Carbonate cements in clastic reservoir rocks from offshore Norway — relationships between isotopic composition, textural development and burial depth. - In: Marshall, J. D. (ed.): Diagenesis of sedimentary sequences. Geol. Soc. Lond., Spec. Publ.,36, 313–325.

    Google Scholar 

  • Schmidt, V. &McDonald, D. A. (1979a): The role of secondary porosity in the course of sandstone diagenesis. - In: Scholle, P. A. & Schluger, P. R., (eds.): Aspects of diagenesis. Soc. Econ. Paleontol. Mineral., Spec. Publ.,26, 175–207.

  • - (1979b): Texture and recognition of secondary porosity in sandstones. - In: Scholle, P. A. & Schluger, P. R., (eds.): Aspects of diagenesis. Soc. Econ. Paleontol. Mineral., Spec. Publ.,26, 209–225.

  • Seeman, U. (1979): Diagenetically formed interstitial clay minerals as a factor in Rotligende sandstone reservoir quality in the Dutch sector of the North Sea. - Jour. Petr. Geol.,1, 55–62.

    Google Scholar 

  • Selley, R. C. (1978): Porosity gradients in North Sea oil-bearing sandstones. - Jour. Geol. Soc. Lond.,135, 119–132.

    Google Scholar 

  • Siever, R., Beck, K. C. &Berner, R. A. (1965): Composition of interstitial waters of modern sediments. - Jour. Geol.,73, 39–73.

    Google Scholar 

  • Sommer, F. (1978): Diagenesis of sandstones in the Viking Graben. - Jour. Geol. Soc. Lond.,135, 63–67.

    Google Scholar 

  • Sorby, R. C. (1863a): On the direct correlation of mechanical and chemical forces. Proc. Royal. Soc. Lond.,12, 538–550.

    Google Scholar 

  • — (1863b): On impressed limestone pebbles, as illustrating a new principle in chemical geology. West Yorks Geol. Soc.,14, 458–461.

    Google Scholar 

  • Stonecipher, S. A.,Winn JR, R. D. &Bishop, M. G. (1984): Diagenesis of the Frontier Formation, Moxa Arch: A Function of Sandstone Geometry, Texture and Composition, and fluid flux. - In: Clastic Diagenesis.McDonald, D. A. & Surdam, R. C. (eck): Am. Ass. Petrol. Geol., Mem.,37, 289–316.

  • Storey, S. R. (1982): Optimum reservoir facies in an immature, shallow lobate delta system: Basal Belly River Formation, Keystone-Pembina area.- In: Hopkins, J. C. (ed.): Despositional Environment and Reservoir Facies in some western Canadian Oil and Gas fields. Univ. Calgary, Core Conference, 3–13.

  • Surdam R. C.,Boese, S. W. &Crossey, L. J. (1984): The chemistry of secondary porosity. - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol., Mem.,37, 127–150.

  • Tada, R. &Siever, R. (1986): Experimental knife-edge pressure solution of halite. Geochim. Cosmochim. Acta,50, 29–36.

    Google Scholar 

  • — &Siever, R. (1987): A new mechanism for pressure solution in porous quartzose sandstone. Geochim. Cosmochim. Acta,51, 2295–2301.

    Google Scholar 

  • Taylor, D. W. (1948): Fundamentals of soil mechanics, 1st. edition, J. Wiley & Sons New York. 700 pp.

    Google Scholar 

  • Thomas, M. (1986): Diagenetic sequences and K/Ar dating in Jurassic sandstones, central Viking Graben: effects on reservoir properties. Clay Minerals,21, 695–710.

    Google Scholar 

  • Tieh, T. T., Berg, R. R., Popp, R. K., Brasher, J. E. &Pike J. D. (1986:) Deposition and diagenesis of Upper Miocene arkoses, Yowlumne and Rio Viejo fields, Kern County, California. - Am. Ass. Petrol. Geol., Bull.,70, 983–969.

    Google Scholar 

  • Tillman, R. W. &Almon, W. R. (1979): Diagenesis of Frontier Formation offshore bar sandstone, Spearhead Ranch Field, Wyoming. - In: Scholle, P. A. & Schluger, P. R. (eds.): Aspects of digenesis. Soc. Econ. Paleontol. Mineral. Spec. Publ.,26, 337–378.

  • Trevana, A. S. &Clark, R. A. (1986): Diagenesis of sandstone reservoirs of Pattini Basin, Gulf of Thailand. Am. Ass. Petrol. Geol., Bull.,70, 299–308.

    Google Scholar 

  • Velde, B. (1984): Transformations of clay minerals. - In: Duran, B. (ed.): Thermal phenomena in sedimentary basins. Intern. Collequim Bordeaux, June 7–10 1983, 11–116.

  • Walderhaug, O. (1989): Quartz cementation of Jurassic sandstones from the Haltenbanken area offshore Mid-Norway — evidence from the study of fluid inclusions. - Jour. Sed. Petr.

  • Weyl, P. K. (1959): Pressure solution and the force of crystallization — a phenomenological theory. Jour. Geophys. Res.,64, 2001–2025.

    Google Scholar 

  • Whittle C. K. (1986): Comparison of sedimentary chlorite composition by X-ray diffraction and analytical TEM. Clay Miner.,21, 937–947.

    Google Scholar 

  • Wood, J. R. &Hewett, T. A. (1982): Fluid convection and mass transfer in porous sandstones — a theoretical model. Geochim. Cosmochim. Acta.,46, 1707–1713.

    Google Scholar 

  • - (1984): Reservoir diagenesis and convective fluid flow. - In: McDonald, D. A. & Surdam, R. C. (eds.): Clastic Diagenesis. Am. Ass. Petrol. Geol. Mem.,37, 99–110.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjørlykke, K., Ramm, M. & Saigal, G.C. Sandstone diagenesis and porosity modification during basin evolution. Geol Rundsch 78, 243–268 (1989). https://doi.org/10.1007/BF01988363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01988363

Keywords

Navigation