Marine Biology

, Volume 111, Issue 1, pp 175–181 | Cite as

Uptake of dissolved organics by marine bacteria as a function of fluid motion

  • B. E. Logan
  • D. L. Kirchman


A mass transfer analysis predicts that fluid motion can increase the assimilation of dissolved organics by attached compared to free-living microorganisms under certain conditions. To test this we examined the effect of advective flow and fluid shear on the uptake of model compounds (leucine and glucose) by natural assemblages of heterotrophic bacteria, collected from Roosevelt Inlet, Delaware Bay (USA), in 1989. We found that [3H]leucine uptake by cells held in fluid moving at 20 to 70 m d−1 was eight times larger than uptake by cells at a velocity of 3 m d−1. This effect was only observed at low leucine concentrations (ca. 1 nM), when uptake was likely not saturated. When we added leucine at concentrations expected to saturate leucine uptake (ca. 11 nM), fluid motion past cells did not affect uptake. Fluid flow past bacteria did not increase [3H]glucose uptake, and laminar shear rates of 0.5 to 2.1 s−1 did not increase either glucose or leucine uptake by suspended bacteria. These results indicate that fluid motion increases bacterial uptake of certain lowmolecular-weight dissolved organics only when the microorganism exists in an advective flow field. As predicted from a mass transfer model, fluid shear rates in natural systems are too low to affect bacterial uptake of such compounds.


Assimilation Shear Rate Leucine Heterotrophic Bacterium Fluid Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Alldredge, A. L., Cole, J. C., Caron, D. A. (1986). Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters. Limnol. Oceanogr. 31(1): 68–78Google Scholar
  2. Alldredge, A. L., Gotschalk, C. C. (1988). In situ settling behavior of marine snow. Limnol. Oceanogr. 33: 339–351Google Scholar
  3. Ames, G. F.-F. (1986). Bacterial periplasmic transport systems: structure, mechanism, and evolution. A. Rev. Biochem. 55: 397–425CrossRefGoogle Scholar
  4. Azam, F., Hodson, R. E. (1981). Multiphasic kinetics for D-glucose uptake by assemblages of natural marine bacteria. Mar. Ecol. Prog. Ser. 6: 213–222Google Scholar
  5. Bright, J. J., Fletcher, M. (1983). Amino acid assimilation and electron transport system activity in attached and free living marine bacteria. Appl. envirol. Microbiol. 45(3): 818–825Google Scholar
  6. Canelli, E., Fuhs, G. W. (1976). Effect of the sinking rate of two diatoms (Thalassiosira sp.) on uptake from low concentrations of phosphate. J. Phycol. 12: 93–99Google Scholar
  7. DeLong, E. F., Yayanos, A. A. (1987). Properties of the glucose transport system in some deep-sea bacteria. Appl. envirl. Microbiol. 53(3): 527–532Google Scholar
  8. Dudukovic, M. P., Mills, P. L. (1985). A correction factor for mass transfer coefficients for transport to partially impenetrable or non-absorbing surfaces. A.I.Ch.E.H. 31(3): 491–494Google Scholar
  9. Duuren, F. A. van (1968). Defined velocity gradient model flocculation. J. sanit. Engng Div. Am. Soc. civ. Engers 94(SA4): 671–682Google Scholar
  10. Fletcher, M. (1986). Measurement of glucose utilization byPseudomonas fluorescens that are free-living and that are attached to surfaces. Appl. envirl Microbiol. 52(4): 672–676Google Scholar
  11. Frankel, N. A., Acrivos, A. (1968). Heat and mass transfer from small spheres and cylinders freely suspended in shear flow. Physics Fluids 11: 1913CrossRefGoogle Scholar
  12. Fuhrman, J. A., Ferguson, R. L. (1986). Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. Mar. Ecol. Prog. Ser. 33: 237–242Google Scholar
  13. Furlong, C. E. (1987). Osmotic-shock-sensitive transport systems. In: Neidhardt, F. C. (ed.)Escherichia coli andSalmonella typhimurium, Vol. 1. American Society for Microbiology, Washington, D.C., p. 768–796Google Scholar
  14. Hobbie, J. E., Daley, R. J., Jasper, S. (1977). Use of Nucleopore filters for counting bacteria by fluorescence microscopy. Appl. envirl Microbiol. 33(5): 1225–1228Google Scholar
  15. Hodson, R. E., Azam, F., Carlucci, A. F., Fuhrman, J. A., Karl, D. M., Holm-Hansen, O. (1981). Microbial uptake of dissolved organic matter in McMurdo Sound, Antartica. Mar. Bio. 61: 89–94CrossRefGoogle Scholar
  16. Friberri, J., Unanue, M., Barcina, I., Egea, L. (1987). Seasonal variation in population density and heterotrophic activity of attached and free-living bacteria in coastal waters. Appl. envirol Microbiol. 53(10): 2308–2314Google Scholar
  17. Jeffery, W. H., Paul, J. H. (1986). Activity measurements of planktonic microbial and microfouling communities in a eutrophic estuary. Appl. envirl Microbiol. 51(1): 157–162Google Scholar
  18. Keil, R. G., Kirchman, D. L. (1991). Dissolved combined amino acids as estimated by vapor-phase hydrolysis method. Mar. Chem. 33: 243–259CrossRefGoogle Scholar
  19. Kirchman, D. (1983). The production of bacteria attached to particles suspended in a freshwater pond. Limnol. Oceanogr. 28(5): 858–872Google Scholar
  20. Kirchman, D. (1990). Limitation of bacterial growth by dissolved organic matter in the subarctic Pacific. Mar. Ecol. Prog. Ser. 62: 47–54Google Scholar
  21. Kirchman, D., Mitchell, R. (1982). Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl. envirl Microbiol. 43(1): 200–209Google Scholar
  22. Li, D.-H., Ganczarczyk, J. J. (1988). Flow through activated sludge flocs. Wat. Res. 22(6): 789–792CrossRefGoogle Scholar
  23. Lindroth, P., Mopper, K. (1979). High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivitization with o-phthaldialdehyde. Analyt. Chem. 51: 1667–1674CrossRefGoogle Scholar
  24. Logan, B. E. (1987). Advective flow through permeable aggregates. EOS Trans. Am. geophys. Un. 48: 1723Google Scholar
  25. Logan, B. E., Alldredge, A. L. (1989). The increased potential for nutrient uptake by flocculating diatoms. Mar. Biol. 101: 443–450CrossRefGoogle Scholar
  26. Logan, B. E., Dettmer, J. W. (1990). Increased mass transfer to microorganisms with fluid motion. Biotechnol. Bioengng 35: 1135–1144CrossRefGoogle Scholar
  27. Logan, B. E., Hunt, J. R. (1987). Advantages to microbes of growth in permeable aggregates in marine systems. Limnol. Oceanogr. 32(5): 1034–1048Google Scholar
  28. Logan, B. E., Hunt, J. R. (1988). Bioflocculation as a microbial response to substrate limitations. Biotechnol. Bioengng 31: 91–101CrossRefGoogle Scholar
  29. Meadow, N. D., Revuelta, R., Chen, V. N., Colwell, R. R., Rosemen, S. (1987). Phosphoenolpyruvate: glucose phosphotransferase system in species ofVibrio, a widely distributed marine bacterial genus. J. Bact. 169(11): 4893–4900PubMedGoogle Scholar
  30. Mierle, G. (1985). Kinetics of phosphate transport bySynechococcus leopoliensis (Cyanophyta): evidence for diffusion limitation of phosphate uptake. J. Phycol. 21: 177–181Google Scholar
  31. Munk, W. H., Riely, G. A. (1952). Absorption of nutrients by aquatic plants. J. mar. Res. 11: 215–240Google Scholar
  32. Nikaido, H., Vaara, M. (1987). Outer membrane. In: Neidhardt, F. C. (ed).Escherichia coli andSalmonella typhimurium, Vol. 1. American Society for Microbiology, Washington, D.C., p. 7–22Google Scholar
  33. O'Melia, C. R. (1980). Aquasols: the behavior of small particles in aquatic systems. Envir. Sci. Technol. 14(9): 1052–1060CrossRefGoogle Scholar
  34. Paerl, H. W., Merkel, S. M. (1982). Differential phosphorus assimilation in attached vs. unattached microorganisms. Arch. Hydrobiol. 93: 125–134Google Scholar
  35. Palumbo, A. V., Ferguson, R. L., Rublee, P. A. (1984). Size of suspended bacterial cells and association of heterotrophic activity with size fractions of particles in estuarine and coastal waters. Appl. envirl Microbiol. 48(1): 157–164Google Scholar
  36. Pasciak, W. J., Gavis, J. (1975). Transport limited nutrient uptake rates inDitylum brightwellii. Limnol. Oceanogr. 20: 604–617Google Scholar
  37. Purcell, E. M. (1978). The effect of fluid motions on the absorption of molecules by suspended particles. J. Fluid Mech. 84(3): 551–559Google Scholar
  38. Simon, M. (1985). Specific uptake rates of amino acids by attached and free living bacteria in a mesotrophic lake. Appl. envirl Microbiol. 49(5): 1254–1259Google Scholar
  39. Simon, M. (1987). Biomass and production of small and large freeliving bacteria in Lake Constance. Limnol. Oceanogr. 591: 591–607Google Scholar
  40. Soloviev, A. V., Vershinshy, N. V., Bezverchnii, B. A. (1988). Smallscale turbulence measurements in the thin surface layer of the ocean. Deep-Sea Res. 35(12A): 1859–1879CrossRefGoogle Scholar
  41. Stryer, L. (1981). Biochemistry, 2nd edn. W. H. Freeman & Co., San FranciscoGoogle Scholar
  42. Wittler, R., Baumgartl, H., Lubbers, D. W., Schugerl, K. (1986). Investigation of oxygen transport intoPenicillium chrysogenum pellets by microprobe measurements. Biotechnol. Bioengng 28(7): 1024–1036CrossRefGoogle Scholar
  43. Yao, K.-M., Habibian, M. T., O'Melia, C. R. (1971). Water and wastewater filtration: concepts and applications. Envir. Sci. Technol. 11(5): 1105–1112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • B. E. Logan
    • 1
  • D. L. Kirchman
    • 2
  1. 1.Environmental Engineering Program, Department of Civil EngineeringUniversity of ArizonaTucsonUSA
  2. 2.College of Marine StudiesUniversity of DelawareLewesUSA

Personalised recommendations