Advertisement

Experientia

, Volume 50, Issue 2, pp 115–120 | Cite as

Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells

  • T. Ochi
  • T. Kaise
  • Y. Oya-Ohta
Research Articles

Abstract

The cytotoxicity of arsenic compounds towards BALB/c 3T3 cells in culture was investigated, together with the role of glutathione (GSH) in the induction of the cytotoxic effects. The rank order of cytotoxicity was as follows: arsenite (As3+)>arsenate (As5+)>dimethylarsinic acid (DMAA)>methylarsonic acid (MAA)>trimethylarsine oxide (TMAO). Arsenobetaine, arsenocholine and the tetramethylarsonium ion were less toxic. Depletion of GSH enhanced the cytotoxic effects of As3+, As5+, MAA and TMAO, while the cytotoxicity of DMAA was markedly reduced by depletion of GSH. These results suggest that GSH plays a role in protecting the cells against the toxic effects of As3+, As5+, MAA and TMAO while it is involved in the induction of the cytotoxic effects of DMAA.

Key words

Arsenic compounds cytotoxicity BALB/c 3T3 cells glutathione depletion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braman, R. S., and Foreback, C. C., Science182 (1973) 1247.PubMedGoogle Scholar
  2. 2.
    Crecelius, E. A., Environ. Health Perspect.19 (1977) 147.PubMedGoogle Scholar
  3. 3.
    Smith, T. J., Crecelius, E., and Reading, J. C., Environ. Health Perspect.19 (1977) 89.PubMedGoogle Scholar
  4. 4.
    Yamauchi, H., and Yamamura, Y., Indust. Health17 (1979) 79.Google Scholar
  5. 5.
    Buchet, J. P., Lauwerys, R., and Roels, H., Int. Archs occup. environ. Health46 (1980) 11.CrossRefGoogle Scholar
  6. 6.
    Buchet, J. P., Lauwerys, R., and Roels, H., Int. Arch. cccup. environ. Health48 (1981) 71.CrossRefGoogle Scholar
  7. 7.
    Lakso, J. U., and Peaples, S. A., J. Argic. Food Chem.23 (1975) 674.CrossRefGoogle Scholar
  8. 8.
    Tam, K. H., Charbonnean, S. M., Bryce, F., and Lacroix, G., Analyt. Biochem.86 (1978) 505.CrossRefPubMedGoogle Scholar
  9. 9.
    Marafante, E., and Vahter, M., Chemico.-biol. Interact.50 (1984) 49.CrossRefGoogle Scholar
  10. 10.
    Vahter, M., Environ. Res.21 (1981) 286.CrossRefGoogle Scholar
  11. 11.
    Yamauchi, H., and Yamamura, Y., Toxic. appl. Pharmac.74 (1984) 134.CrossRefGoogle Scholar
  12. 12.
    Fowler, B. A., Advances in Modern Toxicology, vol. 2, Toxicology of Trace Elements, p. 79. Eds. R. A. Goyer and M. A. Mehlman. Hemisphere Publishing Corporation, Washington 1977.Google Scholar
  13. 13.
    Webb, J. L., Enzyme and metabolic inhibitors, vol. 3, p. 595. Academic Press, New York 1966.Google Scholar
  14. 14.
    Yamanaka, K., Hasegawa, A., Sawamura, R., and Okada, S., Biochem. biophys. Res. Commun.165 (1989) 43.CrossRefPubMedGoogle Scholar
  15. 15.
    Yamanaka, K., Hoshino, M., Okamoto, M., Sawamura, R., Hasegawa, A., and Okada, S., Biochem. biophys. Res. Commun.168 (1990) 58.CrossRefPubMedGoogle Scholar
  16. 16.
    Yamanaka, K., Hasegawa, A., Sawarura, R., and Okada, S., Toxic. appl. Pharmac.108 (1991) 205.CrossRefGoogle Scholar
  17. 17.
    Lunde, G., Acta chem. scand.27 (1973) 1586.PubMedGoogle Scholar
  18. 18.
    Edmonds, J. S., and Francesconi, K. A., Chemosphere10 (1981) 1041.CrossRefGoogle Scholar
  19. 19.
    Norin, H., Rygage, R., Christakopoulos, A., and Sandstrom, M., Chemosphere12 (1983) 299.CrossRefGoogle Scholar
  20. 20.
    Siomi, K., Kakehashi, Y., Yamanaka, H., and Kikuchi, T., Appl. Organomet. Chem.1 (1987) 177.CrossRefGoogle Scholar
  21. 21.
    Edmonds, J. S., and Francesconi, K. A., Nature, London289 (1981) 602.Google Scholar
  22. 22.
    Tietze, F., Analyt. Biochem.27 (1969) 502.CrossRefPubMedGoogle Scholar
  23. 23.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. biol. Chem.193 (1951) 265.PubMedGoogle Scholar
  24. 24.
    Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D., and Mitchell, J. B., Cancer Res.47 (1987) 936.PubMedGoogle Scholar
  25. 25.
    Kaise, T., Watanabe, S., and Itoh, K., Chemosphere14 (1985) 1327.CrossRefGoogle Scholar
  26. 26.
    Kaise, T., Yamauchi, H., Hirayama, T., and Fukui, S., Appl. Organomet. Chem.2 (1988) 339.CrossRefGoogle Scholar
  27. 27.
    Kaise, T., Hanaoka, K., and Tagawa, S., Chemosphere16 (1987) 2551.CrossRefGoogle Scholar
  28. 28.
    Kaise, T., and Fukui, S., Appl. Organomet. Chem.6 (1992) 155.CrossRefGoogle Scholar
  29. 29.
    Arrick, B. A., Nathan, C. F., Griffith, O. W., and Cohn, Z. A., J. biol. Chem.257 (1982) 1231.PubMedGoogle Scholar
  30. 30.
    Arrick, B. A., and Nathan, C. F., Cancer Res.44 (1984) 4224.PubMedGoogle Scholar
  31. 31.
    Ochi, T., Otsuka, F., Takahashi, K., and Ohsawa, M., Chemico.-biol. Interact.65 (1988) 1.CrossRefGoogle Scholar
  32. 32.
    Griffith, O. W., and Meister, A., J. biol. Chem.254 (1979) 7558.PubMedGoogle Scholar
  33. 33.
    Buchet, J. P., and Lauwerys, R., Toxic. appl. Pharmac.91 (1987) 65.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • T. Ochi
    • 1
  • T. Kaise
    • 2
  • Y. Oya-Ohta
    • 3
  1. 1.Department of Environmental Toxicology, Faculty of Pharmaceutical SciencesTeikyo UniversitySagamiko, Kanagawa
  2. 2.Kanagawa Prefectural Public Health LaboratoriesYokohama
  3. 3.Kanagawa Prefectural College of Nursing and Medical TechnologyYokohamaJapan

Personalised recommendations