Journal of thermal analysis

, Volume 46, Issue 3–4, pp 681–718 | Cite as

Dynamic DSC, SAXS and WAXS on homogeneous ethylene-propylene and ethylene-octene copolymers with high comonomer contents

  • V. B. F. Mathot
  • R. L. Scherrenberg
  • M. F. J. Pijpers
  • W. Bras

Abstract

Ethylene-propylene (EP) and ethylene-octene (EO) copolymers polymerized with the aid of homogeneous vanadium and metallocene catalysts were compared by DSC and time-resolved simultaneous SAXS-WAXS-DSC at scanning rates of 10 and 20°C min−1 using synchrotron radiation. An EP copolymer with a density of 896 kg m−3 (about 89 mol % ethylene) after compression moulding gave orthorhombic WAXS reflections. The crystallinity as a function of temperature [wc(T)] calculated from these reflections using the two-phase model was in good agreement withwc(T) calculated fromcp measurements using DSC. Thecp measurements also enabled calculation of the baselinecp and the excesscp. The SAXS measurements revealed a strong change in the long period in cooling and in heating. The SAXS invariant as a function of temperature showed a maximum in both cooling and heating, which could be explained from the opposing influences of the crystallinity and the electron density difference between the two phases. Two EO copolymers with densities of about 871 kg m−3 (about 87 mol% ethylene) no longer showed any clear WAXS reflections, although DSC and SAXS measurements showed that these copolymers did crystallize. The similarity between the results led to the conclusion that the copolymers, though based on different catalyst systems — vanadium and metallocene — did not have strongly different sets of propagation probabilities of chain growth during polymerization. On the basis of a Monte Carlo simulation model of crystallization and morphology, based on detailed knowledge of the microchain structure, the difference between WAXS on the one hand and DSC and SAXS on the other could be explained as being due to loosely packed crystallized ethylene sequences in clusters. These do cause the density and the electron density of the cluster to increase (which is measurable by SAXS) and the enthalpy to decrease (which is measurable by DSC) but the clusters are too small and/or too imperfect to give constructive interference in the case of WAXS. Of an EP copolymer with an even lower ethylene content (about 69 mol %), the crystallization and melting processes could still be readily measured by DSC and SAXS, which proves that these techniques are eminently suitable for investigating the crystallization and melting behaviour of the copolymers studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. F. Mathot, Ch. 9: ‘The Crystallization and Melting Region’ in: ‘Calorimetry and Thermal Analysis of Polymers’, V.B.F. Mathot (Ed.), Hanser Publishers, München 1994, p. 231.Google Scholar
  2. 2.
    V. B. F. Mathot, ‘Crystallization and Melting of Linear, Branched and Copolymerized Polyethylenes as Revealed by Fractionation Methods and DSC’ in: ‘New Advances in Polyolefins’, T. C. Chung (Ed.), Plenum Press, 1994, p. 121.Google Scholar
  3. 3.
    R. K. Bayer, Colloid & Polymer Sci., 269 (1991) 421; 270 (1992) 331; 272 (1993) 910.Google Scholar
  4. 4.
    H. G. Kilian, in: ‘Thermal Analysis and Calorimetry in Polymer Physics’, V. B. F. Mathot (Ed.), Special issue Thermochimica Acta, 238 (1994) 113.Google Scholar
  5. 5.
    R.G. Alamo and L. Mandelkern, in: ‘Thermal Analysis and Calorimetry in Polymer Physics’, V. B. F Mathot (Ed.), Special issue Thermochimica Acta, 238 (1994) 155.Google Scholar
  6. 6.
    B. Wunderlich, ‘Macromolecular Physics, Vol. 3: Crystal Melting’; Academic Press, New York 1980.Google Scholar
  7. 7.
    S.-D. Clas, K. E. McFaddin, K. E. Russell, M. V. Scammel-Bullock and I. R. Peat, J. Polym. Sci.: Part A: Polym. Chem., 25 (1987) 3105.CrossRefGoogle Scholar
  8. 8.
    S. Hosoda, Polym. J., 20 (1988) 383.CrossRefGoogle Scholar
  9. 9.
    G. Bodor, H. J. Dalcomo and O. Schröter, Colloid & Polymer Sci., 267 (1989) 480.Google Scholar
  10. 10.
    C. G. Vonk and H. Reynaers, Polym. Commun., 31 (1990) 190.Google Scholar
  11. 11.
    P. J. Flory, J. Chem. Phys., 15 (1947) 684.CrossRefGoogle Scholar
  12. 12.
    P. J. Flory, Trans. Faraday Soc., 51 (1955) 848.CrossRefGoogle Scholar
  13. 13.
    P. J. Flory, and L. Mandelkern, J. Polym. Sci., 21 (1956) 345.CrossRefGoogle Scholar
  14. 14.
    K. Casey, C. T. Elston and M. K. Phibbs, Polym. Letters, 2 (1964) 1053.CrossRefGoogle Scholar
  15. 15.
    I. J. Bastien, R. W. Ford and H. D. Mak, Polym. Letters, 4 (1966) 147.CrossRefGoogle Scholar
  16. 16.
    C. T. Elston, Can. Pat. No. 984,213, 1967.Google Scholar
  17. 17.
    K. K. Dohrer, L. G. Hazlitt and N. F. Whiteman, J. Plast. Film Sheeting, 4(3) (1988) 214.Google Scholar
  18. 18.
    H. Sinn and W. Kaminsky, Angewandte Chemie, International Edition, Engl., 19 (1980) 390.Google Scholar
  19. 19.
    C. S. Speed, SPE Polyolefins, VII (1991) 46.Google Scholar
  20. 20.
    K. W. Swogger, Proceedings of the 1992 Specialty Polyolefins Conference, Schotland Business Research, Sept., (1992) 157.Google Scholar
  21. 21.
    B. C. Childress, Worldwide Metallocene Conference MetCon '94, Houston, USA, 1994.Google Scholar
  22. 22.
    L. Woo, M. T. K. Ling and S. P. Westphal, in: Proceedings of the Am. Chem. Soc., Div. Polym. Mat.: Sci. and Eng., 71, Fall Meeting, Washington 1994, p. 611.Google Scholar
  23. 23.
    Y-C. Hwang, S. Chum, R. Guerra and K. Sehanobish, Antec 94 SPE Conference Proceedings, Vol III (1994) 3414.Google Scholar
  24. 24.
    B. Wunderlich: ‘Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects’, Academic Press, New York 1973.Google Scholar
  25. 25.
    B. Wunderlich ‘Macromolecular Physics, Vol. 2: Crystal Nucleation, Growth, Annealing’; Academic Press, New York 1976.Google Scholar
  26. 26.
    ‘Calorimetry and Thermal Analysis of Polymers’, V. B. F. Mathot (Ed.); Hanser Publishers, München 1994.Google Scholar
  27. 27.
    V. B. F. Mathot, M. F. J. Pijpers, R. L. Scherrenberg and W. Bras, in: Proceedings of the 23rd NATAS Conference; J. B. Enns (Ed.), Toronto 1994, p. 150; V. B. F. Mathot, R. L. Scherrenberg, M. F. J. Pijpers and W. Bras, in: Polym. Prepr. of the Am. Chem. Soc., Div. Polym. Chem., 36(1), ACS Meeting ‘Advances in Crystalline Polymers’, California Meeting, Anaheim 1995, p. 302.Google Scholar
  28. 28.
    W. Bras, G. E. Derbyshire, A. J. Ryan, G. R. Mant, A. Felton, R. A. Lewis, C. J. Hall and G. N. Greaves, Nucl. Instrum. Meth. Phys. Res. A, 326 (1993) 587.Google Scholar
  29. 29.
    W. Bras, G. E. Derbyshire, S. M. Clark, A. J. Ryan and J. Cooke, submitted to the Journal of Applied Crystallography.Google Scholar
  30. 30.
    D. C. McFaddin, K. E. Russell, Gang Wu and R. D. Heyding, J. Polym. Sci.: Part B: Polym. Phys., 31 (1993) 175.CrossRefGoogle Scholar
  31. 31.
    C. G. Vonk, J. Appl. Cryst., 6 (1973) 148.CrossRefGoogle Scholar
  32. 32.
    V. Mathot, in: ‘Polycon '84 LLDPE’, The Plastics and Rubber Institute, London 1984, p. 1; V. B. F. Mathot, H. M. Schoffeleers, A. M. G. Brands and M. F. J. Pijpers, in: ‘Morphology of Polymers’, B. Sedlácek (Ed.), Walter de Gruyter & Co., Berlin-New York 1986, p. 363.Google Scholar
  33. 33.
    V. B. F. Mathot and M. F. J. Pijpers, Polymer Bulletin, 11 (1984) 297.CrossRefGoogle Scholar
  34. 34.
    V. Mathot, T. Pijpers and W. Bunge, in: Polym. Prepr. of the Am. Chem. Soc., Div. Polym. Chem., ACS Meeting ‘Recent Advances in Polyolefin Polymers’, 67, Fall Meeting, Washington 1992, p. 143.Google Scholar
  35. 35.
    V. B. F. Mathot and M. F. J. Pijpers, J. Appl. Polym. Sci., 39(4) (1990) 979.CrossRefGoogle Scholar
  36. 36.
    V. Mathot, M. Pijpers, J. Beulen, R. Graff and G. van der Velden, in: ‘Proceedings of the Second European Symposium on Thermal Analysis 1981 (ESTA2)’, D. Dollimore (Ed.), Heyden, London 1981, p. 264.Google Scholar
  37. 37.
    B. K. Hunter, K. E. Russell, M. V. Scammell and S. L. Thompson, J. Polym. Sci.: Polym. Chem. Ed., 22 (1984) 1383.CrossRefGoogle Scholar
  38. 38.
    Th. G. Scholte, N. L. J. Meijerink, H. M. Schoffeleers and A. M. G. Brands, J. Appl. Polym. Sci., 29 (1984) 3763.CrossRefGoogle Scholar
  39. 39.
    K. Murata and S. Kobayashi, Kobunshi Kagaku, 26 (1969) 536.Google Scholar
  40. 40.
    J. M. Barrales-Rienda and J. M. G. Fatou, Polymer, 13 (1972) 407.CrossRefGoogle Scholar
  41. 41.
    J.-H. Hser and S. H. Carr, Polym. Eng. Sci., 19 (1979) 436.CrossRefGoogle Scholar
  42. 42.
    V. B. F. Mathot and M. F. J. Pijpers, Polymer Bulletin, 11 (1984) 297.CrossRefGoogle Scholar
  43. 43.
    Magill, J. H., in: ‘Polymer Handbook’ 3rd ed., J. Brandrup, E.H. Immergut (Eds.), Wiley, 1989, p. VI/279.Google Scholar
  44. 44.
    R. G. Alamo, E. K. M. Chan, L. Mandelkern and I. G. Voigt-Martin, Macromolecules, 25(24) (1992) 6381.CrossRefGoogle Scholar
  45. 45.
    R. G. Alamo, B. D. Viers and L. Mandelkern, Macromolecules, 26 (1993) 5740.CrossRefGoogle Scholar
  46. 46.
    V. B. F. Mathot, in: ‘Crystallization of Polymers’, M. Dosière (Ed.), NATO ASI-C Series ‘Mathematical and Physical Sciences’, 1993, p. 102.Google Scholar
  47. 47.
    R. A. C. Deblieck and V. B. F. Mathot, J. Mater. Sci. Lett., 7 (1988) 1276.CrossRefGoogle Scholar
  48. 48.
    F. M. Mirabella, Jr., S. P. Westphal, P. L. Fernando, E. A. Ford and J. G. Williams, J. Polym.'Sci.: Part B: Polym. Phys., 26 (1988) 1995.CrossRefGoogle Scholar
  49. 49.
    J. van Ruiten and J. W. Boode, Polymer, 33(12) (1992) 2549.CrossRefGoogle Scholar
  50. 50.
    R. B. Richards, J. Appl. Chem., 1 (1951) 370.Google Scholar
  51. 51.
    C. H. Baker and L. Mandelkern, Polymer, 7 (1966) 71.CrossRefGoogle Scholar
  52. 52.
    C. G. Vonk, in: ‘Proceedings Golden Jubilee Conference Polyethylenes’, The Plastics and Rubber Institute, Chameleon Press Ltd., London 1983, p. D2.1.Google Scholar
  53. 53.
    R. Alamo, R. Domszy and L. Mandelkern, J. Phys. Chem., 88 (1984) 6587.CrossRefGoogle Scholar
  54. 54.
    F. J. Baltá Calleja and C. G. Vonk: X-ray Scattering of Synthetic Polymers. Polymer Science Library 8, Elsevier, Amsterdam 1989.Google Scholar
  55. 55.
    C. G. Vonk and H. Reynaers, Polym. Commun., 31 (1990) 190.Google Scholar
  56. 56.
    C. G. Vonk, J. Polym. Sci.: Part C, 38 (1972) 429.Google Scholar
  57. 57.
    J. Martinez de Salazar and F.J. Baltá Calleja, J. Cryst. Growth, 48 (1979) 283.Google Scholar
  58. 58.
    C. France, P. J. Hendra, W. F. Maddams and H. A. Willis, Polymer, 28 (1987) 710.CrossRefGoogle Scholar
  59. 59.
    J. Martinez-Salazar, M. Sánchez Cuesta and F. J. Baltá Calleja, Colloid & Polymer Sci., 265 (1987) 239.Google Scholar
  60. 60.
    J. A. Parker, D. C. Bassett, R. H. Olley and P. Jaaskelainen, Polymer, 35(19) (1994) 4142.CrossRefGoogle Scholar
  61. 61.
    V. B. F. Mathot, Ch. C. M. Fabrie, G. P. J. M. Tiemersma-Thoone and G. P. M. van der Velden, in: ‘Proceedings Int. Rubber Conf. (IRC)’, Kyoto, October 15–18, 1985, p. 334.Google Scholar
  62. 62.
    V. B. F. Mathot and Ch. C. M. Fabrie, J. Polym. Sci.: Part B: Polym. Phys., 28 (1990) 2487.CrossRefGoogle Scholar
  63. 63.
    V. B. F. Mathot, Ch. C. M. Fabrie, G. P. J. M. Tiemersma-Thoone and G. P. M. van der Velden, J. Polym. Sci.: Part B: Polym. Phys., 28 (1990) 2509.CrossRefGoogle Scholar
  64. 64.
    H. N. Cheng, Macromolecules, 17 (1984) 1950.CrossRefGoogle Scholar
  65. 65.
    H. N. Cheng and M. A. Bennett, Makromol. Chem., 188 (1987) 135.CrossRefGoogle Scholar
  66. 66.
    J. C. Randall, Rev. Macromol. Chem. Phys., C29(2 & 3) (1989) 201.Google Scholar
  67. 67.
    V. B. F. Mathot, G. P. J. M. Tiemersma-Thoone, G. Evens, J. Pijpers and J. Beulen, to be published.Google Scholar
  68. 68.
    V. B. F. Mathot, Ch. C. M. Fabrie, G. P. J. M. Tiemersma-Thoone and G. P. M. van der Velden, to be published.Google Scholar
  69. 69.
    V. B. F. Mathot, Polymer, 25 (1984) 579. Errata: Polymer, 27 (1986) 969.CrossRefGoogle Scholar
  70. 70.
    B. Wunderlich and G. Czornyj, Macromolecules, 10(5) (1977) 906.CrossRefGoogle Scholar
  71. 71.
    J. J. Maurer, Rubber Chem. Technol., 38 (1965) 979.Google Scholar
  72. 72.
    V. B. F. Mathot, Ch. 5: ‘Thermal Characterization of States of Matter’ in: ‘Calorimetry and Thermal Analysis of Polymers’, V. B. F. Mathot (Ed.); Hanser Publishers, München 1994, p. 105.Google Scholar
  73. 73.
    V. B. F. Mathot and M. F. J. Pijpers, J. Thermal Anal., 28 (1983) 349.Google Scholar
  74. 74.
    M. Dole and B. Wunderlich, J. Polym. Sci., 24 (1957) 139.CrossRefGoogle Scholar
  75. 75.
    V. B. F. Mathot and M.F.J. Pijpers, Thermochim. Acta, 151 (1989) 241.CrossRefGoogle Scholar
  76. 76.
    The ATHAS Data Bank 1980: U. Gaur, S.-F. Lau, H.-C. Shu, B. B. Wunderlich, A. Mehta, B. Wunderlich, J. Phys. Chem. Ref. Data, 10 (1981) 89, 119, 1001; 11 (1982) 313, 1065; 12 (1983) 29, 65, 91; Update: M. Varma-Nair and B. Wunderlich, J. Phys. Chem. Ref. Data, 20(2) (1991) 349; The Eight ATHAS Report — 1995.Google Scholar
  77. 77.
    B. Wunderlich: ‘Thermal Analysis’, Academic Press, Inc., San Diego 1990.Google Scholar
  78. 78.
    M. Alsleben, C. Schick and W. Mischok, Thermochim. Acta, 187 (1991) 261.CrossRefGoogle Scholar
  79. 79.
    P. P. A. Smit, Rheol. Acta, 5 (1966) 277.Google Scholar
  80. 80.
    F. R. Schwarzl, Rheol. Acta, 5 (1966) 270.Google Scholar
  81. 81.
    G. Kraus, Adv. Polym. Sci., 8 (1971) 155.Google Scholar
  82. 82.
    L. C. E. Struik, in: ‘Physical Aging in Amorphous Polymers and Other Materials’, Elsevier, Amsterdam 1978.Google Scholar
  83. 83.
    B. Wunderlich, in: “Thermal Characterization of Polymeric Materials”, E. A. Turi (Ed.), Academic Press, Inc., Orlando, Florida 1981, p. 92.Google Scholar
  84. 84.
    C. G. Vonk and A. P. Pijpers, J. Polym. Sci.: Polym. Phys. Ed., 23 (1985) 2517.CrossRefGoogle Scholar
  85. 85.
    S. Z. D. Cheng, M.-Y. Cao and B. Wunderlich, Macromolecules, 19 (1986) 1868.CrossRefGoogle Scholar
  86. 86.
    H. Suzuki, J. Grebowicz and B. Wunderlich, Brit. Polym. J., 17 (1986) 1.Google Scholar
  87. 87.
    S. Z. D. Cheng and B. Wunderlich, Macromolecules, 20 (1987) 1630.CrossRefGoogle Scholar
  88. 88.
    L. C. E. Struik, in ref. 82 and in a number of papers: Polymer, 28 (1987) 1521, 1534; Polymer, 30 (1989) 799, 815.CrossRefGoogle Scholar
  89. 89.
    S. Z. D. Cheng and B. Wunderlich, Thermochim. Acta, 134 (1988) 161.CrossRefGoogle Scholar
  90. 90.
    S. Z. D. Cheng, R. Pan and B. Wunderlich, Makromol. Chem., 189 (1988) 2443; S. Z. D. Cheng and B. Wunderlich, Thermochim. Acta, 134 (1988) 161; see also a number of papers by S. Z. D. Cheng and B. WunderlichCrossRefGoogle Scholar
  91. 91.
    L. Mandelkern, R. G. Alamo and M. A. Kennedy, Macromolecules, 23 (1990) 4721.CrossRefGoogle Scholar
  92. 92.
    C. Schick and E. Donth, Physica Scripta, 43 (1991) 423.Google Scholar
  93. 93.
    P. Cebe and P. P. Huo, in: ‘Thermal Analysis and Calorimetry in Polymer Physics’, V.B.F. Mathot (Ed.), Special issue Thermochimica Acta, 238 (1994) 229.Google Scholar
  94. 94.
    A. J. Ryan, W. Bras, G. R. Mant and G. E. Derbyshire, Polymer, 35(21) (1994) 4537.CrossRefGoogle Scholar
  95. 95.
    P. R. Swan, J. Polym. Sci., 56 (1962) 403.CrossRefGoogle Scholar
  96. 96.
    H. Wilski, Kunststoffe, 54 (1964) 10, 90.Google Scholar
  97. 97.
    M. Peeters: ‘Crystallization and Melting Behaviour of Homogeneous Copolymers of Ethene and 1-Octene’, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium 1995.Google Scholar
  98. 98.
    M. Hikosaka, Polymer, 28 (1987) 1257.CrossRefGoogle Scholar
  99. 99.
    M. Hikosaka, Polymer, 31 (1990) 458.CrossRefGoogle Scholar
  100. 100.
    R. L. Scherrenberg: ‘The Structural Aspects pf Suspension Poly Vinyl Chloride’, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium 1992.Google Scholar
  101. 101.
    R. L. Scherrenberg, Macromolecules, 26(16) (1993) 4118.CrossRefGoogle Scholar
  102. 102.
    D. C. Bassett: Principles of Polymer Morphology. Cambridge University Press, 1981; A. S. Vaughan and D. C. Bassett, in: Comprehensive Polymer Science, Vol. 2: Polymer Properties, C. Booth and C. Price (Eds.), Pergamon Press, Oxford 1989, p. 415.Google Scholar
  103. 103.
    I. G. Voigt-Martin, Adv. Polym. Sci., 67 (1985) 194.Google Scholar
  104. 104.
    A. Keller, in: ‘Integration of Fundamental Polymer Science and Technology’, L. A. Kleintjens and P. J. Lemstra (Eds.), Elsevier Applied Science Publishers Ltd, Essex, England 1986, p. 425.Google Scholar
  105. 105.
    M. Dosière, in: ‘Handbook of Polymer Science and Technology’, Vol. 2, N. P. Cheremisinoff (Ed.), Marcel Dekker, New York 1989, p. 367.Google Scholar
  106. 106.
    I. G. Voigt-Martin and L. Mandelkern, J. Polym. Sci.: Part B: Polym. Phys., 27 (1989) 967.CrossRefGoogle Scholar
  107. 107.
    J. van Ruiten, F. van Dieren and V. B. F. Mathot in: ‘Crystallization of Polymers’, M. Dosière (Ed.); NATO ASI-C Series Mathematical and Physical Sciences, 1993, p. 481.Google Scholar
  108. 108.
    B. Wunderlich, J. Chem Phys., 29(6) (1958) 1395.CrossRefGoogle Scholar
  109. 109.
    P. J. Flory, J. Amer. Chem. Soc., 84 (1962) 2857.CrossRefGoogle Scholar
  110. 110.
    C. G. Vonk, in: ‘Integration of Fundamental Polymer Science and Technology’, L. A. Kleintjens and P. J. Lemstra (Eds.), Elsevier Applied Science Publishers Ltd, Essex, England 1986, p. 471.Google Scholar
  111. 111.
    P. Schouterden, G. Groeninckx, B. Van der Heyden and F. Jansen, Polymer, 28 (1987) 2099.CrossRefGoogle Scholar
  112. 112.
    S. A. Karoglanian and I. R. Harrison, Polym. Mater. Sci. Eng., 61 (1989) 748.Google Scholar
  113. 113.
    F. Defoor: ‘Molecular, Thermal and Morphological Characterization of Narrowly Branched Fractions of 1-Octene LLDPE’, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium 1992.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • V. B. F. Mathot
    • 1
  • R. L. Scherrenberg
    • 1
  • M. F. J. Pijpers
    • 1
  • W. Bras
    • 2
  1. 1.DSM ResearchMD Geleen
  2. 2.SJ AmsterdamThe Netherlands

Personalised recommendations