Helgoländer Meeresuntersuchungen

, Volume 36, Issue 4, pp 393–426 | Cite as

Eine “red tide” in der südlichen Nordsee und ihre Beziehungen zur Umwelt

  • Max Gillbricht

A “red tide” in the southern North Sea and its relationship to the environment


Phytoplankton blooms have attracted attention since times of old, especially the red tides caused by peridinians. Observed in all regions of the world, red tides occur predominantly in the warmer seas (e. g. West Coast of Florida). An opportunity to study a bloom, caused by the non-toxic dinoflagellateCeratium furca, was provided in North Sea coastal waters of an area ranging from Belgium to Sweden. Its development could be followed from July to October 1981 with the aid of samples taken 5 days a week near the island of Helgoland. A decline in the bloom coincided with a drop in water temperature (increasing turbulence). This condition and the presence, right up to the end, of relatively high amounts of nutrients indicate that nutrient deficiency did not terminate the bloom. Similarly, there was no evidence for a dependence on micronutrients by freshwater input or by the preceding diatom bloom. Longterm investigations indicate that climatic changes coincide with an increase in the phytoplankton stock during all seasons (especially noticeable from July to September) and with a decrease in salinity (there was a minimum in 1981). The stratification of the sea water causes the peridinians to move to depths optimal for their growth which may bring about an aggregation at the surface. There are numerous indications in literature of similar changes of environmental conditions in the North Sea. One example from the Western Baltic Sea demonstrates that the presence of a high vertical density gradient in the sea leads to oxygen deficiency in deeper zones, which, however, is not directly correlated to the coincident phytoplanktonic bloom in the upper layers. It is probable that, under appropriate hydrographical conditions, “red tides” can occur repeatedly in the southern North Sea, produced by non-toxic as well as toxic species.

Zitierte literatur

  1. Anonymus, 1896. Blühen des Wassers und Fischsterben. — Allg. FischZtg21 292.Google Scholar
  2. Armstrong, F. A. J. & Harvey, H. W., 1950. The cycle of phosphorus in the waters of the English Channel. — J. mar. biol. Ass. U. K.29 145–162.Google Scholar
  3. Baldridge, H. D., 1975. Temperature patterns in the long-range prediction of red tide in Florida waters. In: Proceedings of the first international conference on toxic dinoflagellate blooms. Ed. by V. R. LoCicero. The Massachusetts Science and Technology Foundation, Wakefield, Mass., 69–79.Google Scholar
  4. Banse, K., 1968. Hydrography of the Arabian Sea shelf of India and Pakistan and effects on demersal fishes. — Deep Sea Res.15 45–79.Google Scholar
  5. Becker, G. & Kohnke, D., 1978. Long-term variations of temperature and salinity in the inner German Bight. — Rapp. P.-v. Réun. Cons. int. Explor. Mer172 335–344.Google Scholar
  6. Berge, G., 1962. Discoloration of the sea due toCoccolithus huxleyi “bloom”. — Sarsia6 27–40.Google Scholar
  7. Blasco, D., 1978. Observations on the diel migration of marine dinoflagellates off the Baja California coast. — Mar. Biol.46 41–47.CrossRefGoogle Scholar
  8. Boguslawski, G. von, 1884. Handbuch der Ozeanographie. Engelhorn, Stuttgart, 400 pp.Google Scholar
  9. Brongersma-Sanders, M., 1957. Mass mortality in the sea. In: Treatise on marine ecology and paleoecology. Ed. by J. W. Hedgpeth. Geol. Soc. Am., New York,1, 941–1010 (Mem. geol. Soc. Am.67).Google Scholar
  10. Caspers, H., 1968. Der Einfluß der Elbe auf die Verunreinigung der Nordsee. — Helgoländer wiss. Meeresunters.17 422–434.CrossRefGoogle Scholar
  11. Cassie, V., 1981. Non-toxic blooms ofProrocentrum micans (Dinophyceae) in the Karamea Bight. — N. Z. Jl mar. Freshwat. Res.15 181–184.Google Scholar
  12. Cullen, J. J. & Horrigan, S. G., 1981. Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ration, and photosynthetic capacity of the dinoflagellateGymnodinium splendens. — Mar. Biol.62 81–89.CrossRefGoogle Scholar
  13. Cushing, D. H., 1983. Sources of variability in the North Sea ecosystems. In: North Sea dynamics. Ed. by J. Sündermann & W. Lenz. Springer, Berlin, 498–516.Google Scholar
  14. Cushing, D. H. & Dickson, R. R., 1976. The biological response in the sea to climatic changes. — Adv. mar. Biol.14 1–122.Google Scholar
  15. Dale, B. & Yentsch, C. M., 1978. Red tide and paralytic shellfish poisoning. — Oceanus21 (3) 41–49.Google Scholar
  16. Dareste, M. C., 1855. Mémoire sur les animalcules et autres corps organisés qui donnent à la mer une couleur rouge. — Annls Sci. nat. (Zool.)3 179–239.Google Scholar
  17. Dickson, R. R., 1971. A recurrent and persistent pressure-anomaly pattern as the principal cause of intermediate-scale hydrographic variation in the European shelf seas. — Dt. hydrogr. Z.24 97–119.Google Scholar
  18. Dickson, R. R., Lamb, H. H., Malmberg, S.-A. & Colebrook, J. M., 1975. Climatic reversal in northern North Atlantic. — Nature, Lond.256 479–481.Google Scholar
  19. Dickson, R. R. & Reid, P. C., 1983. Local effects of wind speed and direction on the phytoplankton of the Southern Bight. — J. Plankt. Res.5 441–455.Google Scholar
  20. Dragovich, A., Kelly, J. A. & Kelly, R. D., 1965. Red water bloom of a dinoflagellate in Hillsborough Bay, Florida. — Nature, Lond.207 1209–1210.Google Scholar
  21. Dugdale, R. C., 1979. Primary nutrients and red tides in upwelling regions. In: Toxic dinoflagellate blooms. Ed. by D. L. Taylor & H. H. Seliger. Elsevier; North-Holland, Amsterdam, 257–268.Google Scholar
  22. Eppley, R. W., Holm-Hansen, O. & Strickland, J. D. H., 1968. Some observations on the vertical migration of dinoflagellates. — J. Phycol.4 333–340.Google Scholar
  23. Fogg, G. E., 1958. Extracellular products of phytoplankton and the estimation of primary production. — Rapp. P.-v. Réun. Cons. int. Explor. Mer144 56–60.Google Scholar
  24. Gassmann, G. & Gillbricht, M., 1982. Correlations between phytoplankton, organic detritus and carbon in North Sea waters during the Fladenground Experiment (FLEX' 76). — Helgoländer Meeresunters.35 253–262.Google Scholar
  25. Gieskes, W. W. C. & Kraay, G. W., 1977. Continuous plankton records: Changes in the plankton of the North Sea and its eutrophic Southern Bight from 1948 to 1975. — Neth. J. Sea Res.11 334–364.CrossRefGoogle Scholar
  26. Gillbricht, M., 1951. Produktionsbiologische Untersuchungen in der Kieler Bucht. Diss., Univ. Kiel, 92 pp.Google Scholar
  27. Gillbricht, M., 1961. Über den Zusammenhang zwischen verschiedenen Messungen im Meer. — Helgoländer wiss. Meeresunters.7 238–251.CrossRefGoogle Scholar
  28. Gillbricht, M., 1962. Über das Auszählen von Planktonschöpfproben. — Helgoländer wiss. Meeresunters.8 203–218.CrossRefGoogle Scholar
  29. Gillbricht, M., 1964. Einwirkungen des kalten Winters 1962/63 auf die Phytoplanktonentwicklung bei Helgoland. — Helgoländer wiss. Meeresunters.10 263–275.CrossRefGoogle Scholar
  30. Gillbricht, M., 1969. Calculations in marine planktology. Practical and theoretical problems. — Int. Revue ges. Hydrobiol.54 645–660.Google Scholar
  31. Gillbricht, M., 1970. Über den Einfluß der Oberflächenspannung des Seewassers auf Aräometermessungen. — Ber. dt. wiss. Kommn Meeresforsch.21 403–409.Google Scholar
  32. Gillbricht, M., 1974. Ein Problem bei der Berechnung von Regressionsgeraden. — Ber. dt. wiss. Kommn Meeresforsch.23 120–129.Google Scholar
  33. Gillbricht, M., 1977. Phytoplankton distribution in the upwelling area off NW Africa. — Helgoländer wiss. Meeresunters.29 417–438.CrossRefGoogle Scholar
  34. Gillbricht, M., 1980. Gelbstoffe vor Nordwestafrika. — Dt. hydrogr. Z.33 53–67.Google Scholar
  35. Goedecke, E., 1952. Das Verhalten der Oberflächentemperatur in der Deutschen Bucht während der Jahre 1872–1950 und der Zusammenhang mit dem nordwesteuropäischen Meere. — Ber. dt. wiss. Kommn Meeresforsch.13 1–31.Google Scholar
  36. Goedecke, E., 1955. Über die Intensität der Temperatur-, Salzgehalts-und Dichteschichtung in der Deutschen Bucht. — Dt. hydrogr. Z.8 15–28.Google Scholar
  37. Goedecke, E., 1956. Über das Verhalten des Oberflächensalzgehaltes in der Deutschen Bucht während der Jahre 1873–1944 in Verbindung mit langjährigen Salzgehaltsreihen der südlichen Nordsee. — Ber. dt. wiss. Kommn Meeresforsch.14 109–146.Google Scholar
  38. Gran, H. H., 1929. Investigation of the production of plankton outside the Romsdalsfjord 1926–1927. — Rapp. P.-v. Réun. Cons. int. Explor. Mer56 1–112.Google Scholar
  39. Gran, H. H. & Braarud, T., 1935. A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on hydrography, chemistry and turbidity). — J. biol. Bd Can.1 279–467.Google Scholar
  40. Grasshoff, K., 1976. Methods of seawater analysis. Verl. Chemie, Weinheim, 317 pp.Google Scholar
  41. Haddad, K. D. & Carder, K. L., 1979. Oceanic intrusion: One possible initiation mechanism of red tide blooms on the west coast of Florida. In: Toxic dinoflagellate blooms. Ed. by D. L. Taylor & H. H. Seliger. Elsevier; North-Holland, Amsterdam, 269–286.Google Scholar
  42. Hagmeier, E., 1961. Plankton-Äquivalente. — Kieler Meeresforsch.17 32–47.Google Scholar
  43. Hasle, G. R., 1950. Phototactic vertical migration in marine dinoflagellates. — Oikos2 162–175.Google Scholar
  44. Hasle, G. R., 1954. More on phototactic diurnal migration in marine dinoflagellates. — Nytt Mag. Bot.2 139–147.Google Scholar
  45. Hickel, W., Hagmeier, E. & Drebes, G., 1971.Gymnodinium blooms in the Helgoland Bight (North Sea) during August, 1968. — Helgoländer wiss. Meeresunters.22 401–416.CrossRefGoogle Scholar
  46. Hirasaka, K., 1922. On a case of discolored sea-water. — Annotnes zool. jap.10 161–164.Google Scholar
  47. Ingle, R. M. & Martin, D. F., 1971. Prediction of the Florida red tide by means of the iron index. — Envir. Lett.1 69–74.Google Scholar
  48. Kalle, K., 1956. Chemisch-hydrographische Untersuchungen in der inneren Deutschen Bucht. — Dt. hydrogr. Z.9 55–65.Google Scholar
  49. Lenz, J., 1965. Zur Ursache der an die Sprungschicht gebundenen Echostreuschichten der westlichen Ostsee. — Ber. dt. wiss. Kommn Meeresforsch.18 111–161.Google Scholar
  50. Lohmann, H., 1908. Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. — Wiss. Meeresunters. (Abt. Kiel)10 129–370.Google Scholar
  51. Mecking, L., 1916. Der Einfluß des Elbwassers auf den Salzgehalt bei Helgoland. — Annln Hydrogr., Berlin44 554–558.Google Scholar
  52. Mittelstaedt, E. & Soetje, K., 1982. Die Zirkulation in der Deutschen Bucht im August und September 1979. — Dt. hydrogr. Z.35 59–72.Google Scholar
  53. Mulligan, H. F., 1975. Oceanographic factors associated with New England red tide blooms. In: Proceedings of the first international conference on toxic dinoflagellate blooms. Ed. by V. R. LoCicero. The Massachusetts Science and Technology Foundation, Wakefield, Mass., 23–40.Google Scholar
  54. Nathanson, A., 1906. Über die Bedeutung vertikaler Wasserbewegungen für die Produktion des Planktons im Meere. — Abh. sächs. Akad. Wiss. (Math.-Phys. Kl.)5 359–441.Google Scholar
  55. Omori, M. & Hammer, W. M., 1982. Patchy distribution of zooplankton: Behavior, population assessment and sampling problems. — Mar. Biol.72 193–200.CrossRefGoogle Scholar
  56. Ostenfeld, C. H., 1908. On the immigration ofBiddulphia sinensis Grev. and its occurrence in the North Sea during 1903–1907 and on its use for the study of the direction and rate of flow of the currents. — Meddr Kommn Havunders. (Plankton)1 (6) 1–44.Google Scholar
  57. Ouchi, A. & Takayama, H., 1981. A red tide map study by the principal component analysis. — Bull. Jap. Soc. scient. Fish.47 1275–1279.Google Scholar
  58. Paulsen, O., 1909. Plankton investigations in the waters round Iceland and in the North Atlantic in 1904. — Meddr Kommn Havunders. (Plankton)8 (1) 1–57.Google Scholar
  59. Peters, N., 1929. Über Orts- und Geißelbewegung bei marinen Dinoflagellaten. — Arch. Protistenk.67 291–321.Google Scholar
  60. Pomeroy, L. R., Haskin, H. H. & Ragotzkie, R. A., 1956. Observations on dinoflagellate blooms. — Limnol. Oceanogr.1 54–60.Google Scholar
  61. Postma, H. & Kalle, K., 1955. Die Entstehung von Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhältnisse in der Unterelbe. — Dt. hydrogr. Z.8 137–144.Google Scholar
  62. Pratje, A., 1925. Noctiluca. — Tierwelt Nord- u. Ostsee2 II. d1, 1–12.Google Scholar
  63. Radach, G., 1982. Variations in the plankton in relation to climate. — C. M./ICES,Gen 5 1–21.Google Scholar
  64. Radach, G., 1983. Simulations of phytoplankton dynamics and their interactions with other system components during FLEX' 76. In: North Sea dynamics. Ed by J. Sündermann & W. Lenz. Springer, Berlin, 584–610.Google Scholar
  65. Reichard, A. C., 1910. Hydrographische Beobachtungen bei Helgoland in den Jahren 1893–1908. — Wiss. Meeresunters. (Helgoland)10 (1), 1–42.Google Scholar
  66. Rheinheimer, G., 1968. Die Bedeutung des Elbe-Ästuars für die Abwasserbelastung der südlichen Nordsee in bakteriologischer Sicht. — Helgoländer wiss. Meeresunters.17 445–454.CrossRefGoogle Scholar
  67. Rounsefell, G. A. & Dragovich, A., 1966. Correlation between oceanographic factors and abundance of the Florida red-tide (Gymnodinium breve Davis), 1954–61. — Bull. mar. Sci.16 404–422.Google Scholar
  68. Rounsefell, G. A. & Nelson, W. R., 1966. Red-tide research summarized to 1964 including an annotated bibliography. — Spec. scient. Rep. U. S. Fish Wildl. Serv.535 1–85.Google Scholar
  69. Ruud, B., 1926. Quantitative investigations of plankton at Lofoten, March–April, 1922–1924. — Rep. Norw. Fish. mar. Invest.3 (7), 1–30.Google Scholar
  70. Ryther, J. H., 1955. Ecology of autothrophic marine dinoflagellates with reference to red water conditions. In: The luminescence of biological systems. Ed. by F. H. Johnson. Am. Ass. Adv. Sci., Washington, D. C., 387–414.Google Scholar
  71. Schott, F., 1966. Der Oberflächensalzgehalt in der Nordsee. — Dt. hydrogr. Z. Erg. H. (A)9 1–58.Google Scholar
  72. Seliger, H. H., Loftus, M. E. & Subba Rao, D. V., 1975. Dinoflagellate accumulations in Chesapeake Bay. In: Proceeding of the first international conference on toxic dinoflagellate blooms. Ed. by V. R. LoCicero. The Massachusetts Science and Technology Foundation, Wakefield, Mass., 181–206.Google Scholar
  73. Slobodkin, L. B., 1953. A possible condition for red tides on the coast of Florida. — J. mar. Res.12 148–155.Google Scholar
  74. Steidinger, K. A. & Haddad, K., 1981. Biologic and hydrographic aspects of red tides. — BioSci.31 814–819.Google Scholar
  75. Steuer, A., 1910. Planktonkunde. Teubner, Leipzig, 723 pp.Google Scholar
  76. Stosch, H. A. von, 1964. Zum Problem der sexuellen Fortpflanzung in der PeridineengattungCeratium. — Helgoländer wiss. Meeresunters.10 140–152.CrossRefGoogle Scholar
  77. Sverdrup, H. U., 1953. On conditions for the vernal blooming of Phytoplankton. — J. Cons. perm. int. Explor. Mer18 287–295.Google Scholar
  78. Sverdrup, U. H., Johnson, M. W. & Fleming, R. H., 1963. The Oceans. Prentice-Hall, Englewood Cliffs, N.J., 1060 pp.Google Scholar
  79. Taylor, A. H., Reid, P. C., Marsh, T. J., Stephens, J. A. & Jonas, T. D., 1983. Year-to-year changes in the salinity of the southern North Sea, 1948–1973: a budget. In: North Sea dynamics. Ed. by J. Sündermann & W. Lenz. Springer, Berlin, 200–219.Google Scholar
  80. Thórdardóttir, T., 1977. Primary production in north Icelandic waters in relation to recent climatic changes. In: Polar oceans. Ed. by M. J. Dunbar, Arctic Inst. of North America, Calgary, 655–665.Google Scholar
  81. Townsend, D. W., Yentsch, C. M., Parker, C. E., Balch, W. M. & True, E. D., 1983. An island mixing effect in the coastal Gulf of Maine. — Helgoländer Meeresunters.36 347–356.Google Scholar
  82. Tschirn, E., 1920. Biologische Studien an Ceratien der Kieler Förde. Diss., Univ. Kiel, 61 pp.Google Scholar
  83. Wangersky, P. J., 1977. The role of particulate matter in the productivity of surface waters. — Helgoländer wiss. Meeresunters.30 546–564.Google Scholar
  84. Werner, B., 1958. Die Verbreitung und das jahreszeitliche Auftreten der AnthomeduseRathkea octopunctata M. Sars sowie die Temperaturabhängigkeit ihrer Entwicklung und Fortpflanzung. — Helgoländer wiss. Meeresunters.6 137–170.CrossRefGoogle Scholar
  85. Wood, P. C., 1968. Dinoflagellate crop in the North Sea. — Nature, Lond.220 21.Google Scholar
  86. Wyrtky, K., 1950. Über die Beziehungen zwischen Trübung und ozeanischem Aufbau. — Kieler Meeresforsch.7 87–107.Google Scholar

Copyright information

© Biologische Anstalt Helgoland 1983

Authors and Affiliations

  • Max Gillbricht
    • 1
  1. 1.Biologische Anstalt Helgoland (Zentrale)Hamburg 52Bundesrepublik Deutschland

Personalised recommendations