Applied Microbiology and Biotechnology

, Volume 25, Issue 2, pp 163–168 | Cite as

Study on the development of methanogenic microflora during anaerobic digestion of sugar beet pulp

  • M. Labat
  • J. L. Garcia
Environmental Microbiology
  • 24 Downloads

Summary

The pattern of increase in cell number in 12 different groups of bacteria was studied during anaerobic digestion of enzymatically prehydrolysed sugar beet pulp in a 70-l fermentor with sequential feeding over a period of 130 days. Glucose-fermenting bacteria accounted for 90% of the total microflora as estimated by direct epifluorescence. Strictly anaerobic bacteria were largely dominant; only 10% were methanogens. Sulphatereducing bacteria accounted for 0.1% of the total microflora. The yield of biogas was compared with the numbers of bacteria.

Keywords

Sugar Biogas Sugar Beet Anaerobic Digestion Anaerobic Bacterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microb Rev 43:260–296Google Scholar
  2. Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112:115–117PubMedGoogle Scholar
  3. Hobbie JE, Daley RJ, Jasper S (1977) Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228PubMedGoogle Scholar
  4. Hobson PN, Shaw BG (1973) The bacterial population of piggery-waste anaerobic digesters. Wat Res 8:507–516Google Scholar
  5. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris R, Ribbons DW (eds) Methods in Microbiology 3B, pp 117–132. Academic Press, New York, LondonGoogle Scholar
  6. Iannotti EL, Fischer JR, Sievers DM (1978) Medium for the enumeration and isolation of bacteria from a swine waste digester. Appl Environ Microbiol 36:555–566Google Scholar
  7. Labat M, Garcia JL, Meyer F, Deschamps F (1984) Anaerobic digestion of sugar beet pulp. Biotechnol Lett 6:379–384Google Scholar
  8. Mah RA, Sussman C (1967) Microbiology of anaerobic sludge fermentation. I-Enumeration of the non-methanogenic anaerobic bacteria. Appl Microbiol 16:358–361Google Scholar
  9. McCrady MH (1918) Tables for rapid interpretation of fermentation tubes results. Canad Publ Health J 9:201Google Scholar
  10. Siebert ML, Toeien DF, Hattingh WHJ (1967) Estimation of methane-producing bacterial count by the most probable number (MPN) technique. Wat Res 1:13–19Google Scholar
  11. Siebert ML, Toerien DF, Hattingh WHJ (1968) Numeration studies on methanogenic bacteria. Wat Res 2:545–554Google Scholar
  12. Spoelstra SF (1968) Enumeration and isolation of anaerobic microbiota of piggery wastes. Appl Environ Microbiol 36:555–566Google Scholar
  13. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:3009–3011Google Scholar
  14. Toerien DF, Siebert ML (1967) A method for the enumeration and cultivation of anaerobic “acid forming” bacteria present in digesting sludge. Wat Res 1:397–404Google Scholar
  15. Touzel JP, Samain E, Albagnac G, Morfaux JN (1981) Microbiologie des digesteurs anaérobies de l'épuration des eaux résiduaires. Ind Alim Agr 98:833–842Google Scholar
  16. Ueki A, Miyagawa E, Minato H, Azuma T, Suto T (1978) Enumeration and isolation of anaerobic bacteria in sewage digestor fluids. J Gen Appl Microbiol 24:317–332Google Scholar
  17. Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • M. Labat
    • 1
  • J. L. Garcia
    • 1
  1. 1.Laboratoire de Microbiologie ORSTOMUniversité de ProvenceMarseille cédex 3France

Personalised recommendations