Applied Microbiology and Biotechnology

, Volume 23, Issue 2, pp 134–139 | Cite as

Zymomonas mobilis mutants blocked in fructose utilization

  • Stephanie Bringer-Meyer
  • Marc Scollar
  • Hermann Sahm
Applied Microbiolgy


A mutant ofZymomonas mobilis deficient in the utilization of fructose for growth and ethanol formation was shown to lack fructokinase activity. When grown in media which contained glucose+fructose or sucrose, both the mutant and wild type produced sorbitol in amounts up to 60 g·l-1, depending on the initial concentrations of sugars. Sorbitol formation was accompanied by an accumulation of acetaldehyde, gluconate, and acetoin. A ferricyanide-dependent sorbitol dehydrogenase could be localized in the cell membrane; it thus resembles the sorbitol dehydrogenase ofGluconobacter suboxydans. Neither a NAD(P)H dependent reduction of fructose nor a NAD(P) dependent dehydrogenation of sorbitol could be detected in cell-free extracts. The use of fructose-negative mutants ofZ. mobilis for the enrichment of fructose in glucose+fructose mixtures is discussed.


Glucose Acetaldehyde Sugar Sucrose Fructose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrow KD, Collins JG, Leigh DA, Rogers PL, Warr RG (1984) Sorbitol production byZymomonas mobilis. Appl Microbiol Biotechnol 20:225–232Google Scholar
  2. Bergmeyer HN (1974) Methoden der enzymatischen Analyse, Vol I. 3rd ed., Verlag Chemie Weinheim, 502–503, 534–535Google Scholar
  3. Bringer S, Scollar M, Sahm H (1982) Induction, isolation, and characteristics of fructose — negative mutants ofZymomonas mobilis. Paper no. V-39, Abstracts of the 11th International Carbohydrate Symposium, VancouverGoogle Scholar
  4. Bringer S, Finn RK, Sahm H (1984) Effect of oxygen on the metabolism ofZymomonas mobilis. Arch Microbiol 139:376–381Google Scholar
  5. Bringer S, Härtner T, Porolla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures ofZymomonas mobilis. Arch Microbiol 140:312–316Google Scholar
  6. Dawes EA, Ribbons DW, Rees DA (1966) Sucrose utilization byZymomonas mobilis: formation of a levan. Biochem J 98:804–812PubMedGoogle Scholar
  7. Doelle HW (1982a) Kinetic charateristics and regulatory mechanisms of glucokinase and fructokinase fromZymomonas mobilis. Eur J Appl Microbiol Biotechnol 14:241–246Google Scholar
  8. Doelle HW (1982b) The existence of two separate constitutive enzymes for glucose and fructose inZymomonas mobilis. Eur J Appl Microbiol Biotechnol 15:20–24Google Scholar
  9. Finn RK, Bringer S, Sahm H (1984) Fermentation of arabinose to ethanol bySarcina ventriculi. Appl Microbiol Biotechnol 19:161–166Google Scholar
  10. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766Google Scholar
  11. Keller HW, Reents AC, Laraway JW (1981) Process for fructose enrichment from fructose bearing solutions. Starch 33:55–57Google Scholar
  12. Lee KJ, Scotnicki ML, Tribe DE, Rogers PL (1981) The kinetics of ethanol production byZymomonas mobilis on fructose and sucrose media. Biotechnol Lett 3:207–212Google Scholar
  13. Leigh D, Scopes RK, Rogers PL (1984) A proposed pathway for sorbitol production byZymomonas mobilis. Appl Microbiol Biotechnol 20:413–415Google Scholar
  14. McGill DJ, Dawes EA (1971) Glucose and fructose metabolism inZymomonas anaerobia. Biochem J 125:1050–1068Google Scholar
  15. Park YK, Mortatti MPL, Sato HH (1983) Study on levan formation during fermentation ofZymomonas mobilis on sucrose. Biotechnol Lett 5:515–518Google Scholar
  16. Rogers PL, Lee KJ, Tribe DE (1980) High productivity ethanol fermentations withZymomonas mobilis. Process Biochemistry Aug./Sept.:7–11Google Scholar
  17. Shinagawa E, Ameyama M (1982) D-Sorbitol dehydrogenase fromGluconobacter suboxydans, membrane-bound. In: Methods in Enzymology, 89 D, Wood WA (ed) Academic Press, 141–145Google Scholar
  18. Swings J, DeLey J (1977) The biology ofZymomonas. Bacteriol Rev 41:1–46PubMedGoogle Scholar
  19. Tegge G (1979) Anreicherung und Gewinnung von Fructose aus Isosirup oder Invertzucker. Starch 31:409–413Google Scholar
  20. Viikari L (1984a) Formation of levan and sorbitol from sucrose byZymomonas mobilis. Appl Microbiol Biotechnol 19:252–255Google Scholar
  21. Viikari L (1984b) Formation of sorbitol byZymomonas mobilis. Appl Microbiol Biotechnol 20:118–123Google Scholar
  22. Zittan L (1981) Enzymatic hydrolysis of inulin — an alternative way to fructose production. Starch 33:373–377Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Stephanie Bringer-Meyer
    • 1
  • Marc Scollar
    • 1
  • Hermann Sahm
    • 1
  1. 1.Institut für Biotechnologie der Kernforschungsanlage Jülich GmbHJülichFederal Republic of Germany

Personalised recommendations