Skip to main content
Log in

Polymerization kinetics of acrylic bone cements by differential scanning calorimetry

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Bone cements are widely used for the fixation of metallic prostheses in orthopaedics and to form replacements for skull defects in neurosurgery. Acrylic bone cements are based on a mixture of methyl methacrylate (MMA) and a fine powder of polymethyl methacrylate (PMMA). The polymerization of the bone cement occurs in contact with the bone and the prosthesis which act as the boundaries of a bulk polymerization reactor. The kinetic behaviour of the bone cement plays a fundamental role for the final performance of the implant.

In this paper, the isothermal and non-isothermal polymerization behaviour of a commercial bone cement is described. A simple phenomenological model, accounting for the autoacceleration ffect, for a diffusion controlled termination mechanism and for the reaction between inhibitor and initiator, is proposed. The reaction kinetics is analysed by DSC. DSC data are used for the determination of the rates of polymerization under isothermal and non-isothermal conditions. The experimental data are processed to calculate the parameters of the proposed phenomenological kinetic model. The analytical and numerical details related to the integration of the model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Brauer, D. R. Steinberger and J. W. Stansbury, J. Biomed. Mater. Res., 20 (1986) 839.

    Article  PubMed  Google Scholar 

  2. G. Odian, Principles of polymerization, McGraw-Hill, New York, 1988.

    Google Scholar 

  3. I. Mita and K. Horie, JMS-Rev. Macromol. Chem Phys., C27(1) (1987) 91.

    Google Scholar 

  4. J. M. Kenny, A. Maffezzoli and L. Nicolais, Compos. Sci. Tech., 38 (1990) 339.

    Article  Google Scholar 

  5. A. Maffezzoli, R. Terzi and L. Nicolais, J. Mater. Sci.: Mater, in Medicine, 6 (1995) 155.

    Google Scholar 

  6. S. T. Balke and A. E. Hamielec, J. Appl. Polym. Sci., 17 (1973) 905.

    Article  Google Scholar 

  7. J. M. Dionisio and K. F. O'Driscoll, J. Polym. Sci: Polym. Chem., 18 (1980) 241.

    Google Scholar 

  8. H. K. Mahabadi and K. F. O'Driscoll, Macromolecules, 10 (1977) 55.

    Article  Google Scholar 

  9. K. A. High, H. B. Lee and D. T. Turner, Macromolecules, 12 (1979) 332.

    Article  Google Scholar 

  10. R. Sack, G. V. Schulz and G. Meyerhoff, Macromolecules, 21 (1988) 3345.

    Article  Google Scholar 

  11. A. Maffezzoli, D. Ronca, G. Guida, I. Pochini and L. Nicolais, submitted for publication on J. Mater. Sci.: Mater in Medicine.

  12. A. Maffezzoli, R. Terzi and L. Nicolais. J. Mater. Sci.: Mater. in Medicine, 6 (1995) 161.

    Article  Google Scholar 

  13. J. D. Fan and L. J. Lee, Polym. Compos., 7 (1986) 250.

    Article  Google Scholar 

  14. J. M. Kenny and A. Trivisano, Polym. Eng. Sci., 31 (1991) 1426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author would like to thank Prof. L. Nicolais, Prof. G. Guida and R. L. Torre from the University of Naples ‘Federico II’ and Prof. J. M. Kenny from the University of Perugia for their useful advice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffezzoli, A. Polymerization kinetics of acrylic bone cements by differential scanning calorimetry. Journal of Thermal Analysis 47, 35–49 (1996). https://doi.org/10.1007/BF01982684

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01982684

Keywords

Navigation