Advertisement

Rheologica Acta

, Volume 7, Issue 2, pp 184–188 | Cite as

Dynamic modulus of polyisobutylene solutions in superposed steady shear flow

  • J. M. Simmons
Article

Summary

Measurements are reported for the first time of the effect on the dynamic modulus of a viscoelastic liquid of the superposition of a steady shearing orthogonal to the oscillatory shearing. The author believes that the study of this flow, together with the case of parallel superposition of a steady and an oscillatory shearing, will clarify the importance of the second invariant of the rate of deformation tensor used in a number of rheological equations of state for viscoelastic liquids. 8.54, 6.86 and 5.39% solutions of polyisobutylene in cetane were studied using a recently developed electromagnetic transducer over the frequency range 0.3 to 150 c.p.s. Preliminary experiments on the orthogonal superposition of two oscillatory shear flows are also reported.

Keywords

Shear Flow Cetan Dynamic Modulus Oscillatory Shearing Steady Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Erstmalig werden Messungen über den Einfluß der Superposition von stationärer und dazu in senkrechter Richtung periodischer Scherung auf den dynamischen Modul viskoelastischer Stoffe mitgeteilt. Der Verfasser glaubt, daß derartige Messungen neben den Messungen in einem periodischen Scherfeld, worüber parallel ein stationäres Scherfeld überlagert ist, die Bedeutung der 2. Invarianten des Deformationsgeschwindigkeitstensors, die in einigen Theologischen Zustandsgleichungen auftritt, klärt. Isobuthylenlösungen in Cetan der Konzentration 8,54; 6,86 und 5,39% wurden mittels eines neu entwickelten Dynamometers in dem Frequenzbereich 0,3 bis 150 Hz untersucht und vorläufige Messungen in den senkrecht zueinander superponierten periodischen Scherfeldern mitgeteilt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Spriggs, T. W., J. D. Huppler andR. B. Bird, Trans. Soc. Rheol.10, 191 (1966).CrossRefGoogle Scholar
  2. 2).
    Ferry, J. D., Viscoelastic Properties of Polymers (New York 1961).Google Scholar
  3. 3).
    Markovitz, H. andD. R. Brown, Trans. Soc. Rheol.7, 137 (1963).CrossRefGoogle Scholar
  4. 4).
    Osaki, K., M. Tamura, M. Kurata andT. Kotaka, J. Phys. Chem.69, 4183 (1965).Google Scholar
  5. 5).
    Booij, H. C., Rheol. Acta5, 215 (1966).Google Scholar
  6. 6).
    Sokolnikoff, I. S., Mathematical Theory of Elasticity (New York 1956).Google Scholar
  7. 7).
    Tanner, R. I. andJ. M. Simmons, Chem. Eng. Sci. To appear.Google Scholar
  8. 8).
    Oldroyd, J. G., Proc. Roy. Soc. (London) A245, 278 (1958).Google Scholar
  9. 9).
    Simmons, J. M., J. Sci. Instrm.43, 887 (1966).CrossRefGoogle Scholar
  10. 10).
    DeWitt, T. W., H. Markovitz, F. J. Padden, Jr. andL. J. Zapas, J. Colloid Sci.10, 174 (1955).Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag 1968

Authors and Affiliations

  • J. M. Simmons
    • 1
  1. 1.Department of Mechanical EngineeringThe University of SydneySydneyAustralia

Personalised recommendations