Journal of thermal analysis

, Volume 46, Issue 6, pp 1801–1808 | Cite as

Thermal decomposition of basic cobalt and copper carbonates

Thermal stability of the produced oxides as influenced by gamma-irradiation
  • G. A. El-Shobaky
  • A. S. Ahmad
  • A. N. Al-Noaimi
  • H. G. El-Shobaky


Basic cobalt and copper carbonates were prepared by precipitation from solutions of their nitrates using KHCO3 at room temperature in CO2 atmosphere. The thermal decomposition of the prepared basic carbonates was studied by means of TG and DTA techniques and the phases produced were identified by XRD measurements. The products obtained at 400‡C were subjected to different doses of gamma-rays (40–160 M rad) and the thermal stabilities of these solids were investigated.

The results obtained revealed that basic cobalt carbonate decomposed at 335‡C to produce Co3O4 which remained stable up to 850‡ and then decomposed above this temperature giving CoO which transformed into Co3O4 on cooling to room temperature. Basic copper carbonate dissociated at 290‡C yielding CuO which yielded Cu2O and metallic copper at 1060 and 1150‡C, respectively. However, the produced cuprous oxide and metallic copper solids were converted into CuO and CU2O, respectively by cooling in air to room temperature.

Gamma-irradiation decreased the thermal stability of Co3O4 to an extent proportional to the dose employed. On the other hand, this treatment increased the thermal stability of both CuO and Cu2O.


basic cobalt gamma-irradiation thermal stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Pope, D. S. Walker and R. L. Moss, J. Catal., 47 (1977) 33.CrossRefGoogle Scholar
  2. 2.
    G. A. El-Shobaky, I. F. Hewaidy and Th. El-Nabarawy, Surface Technol., 10 (1980) 311.CrossRefGoogle Scholar
  3. 3.
    G. A. El-Shobaky, G. A. Fagal, N. Petro and A. M. Dessouki, Radiat. Phys. Chem., 29 (1987) 151.Google Scholar
  4. 4.
    G. A. El-Shobaky, G. A. Fagal and T. M. H. Saber, Bull. Soc. Chim. France, 4 (1987) 541.Google Scholar
  5. 5.
    G. A. El-Shobaky, Th. El-Nabarawy and G. A. Fagal, J. Appl. Ctal., 52 (1989) 133.Google Scholar
  6. 6.
    A. M. Youssef, S. A. El-Hakam and G. A. El-Shobaky, Radiat. Phys Chem., 40 (1992) 575.Google Scholar
  7. 7.
    G. A. El-Shobaky, Th. El-Nabarwy and G. A. Fagal, J. Serb. Chem. Soc., 22 (1990) 163.Google Scholar
  8. 8.
    G. A. El-Shobaky, A. A. Ramadan and A. M. Dessouki, Radiat Phys. Chem., 30 (1987) 233.Google Scholar
  9. 9.
    C. Duval and R. Duval, Anal. Chim. Acta, 5 (1951) 84.CrossRefGoogle Scholar
  10. 10.
    G. A. El-Shobaky, I. F. Hewaidy and N. M. Ghoneim, Thermochim. Acta, 53 (1982) 105.CrossRefGoogle Scholar
  11. 11.
    G. A. El-Shobaky, N. M. Ghoneim and I. M. Morsi, Thermochim. Acta, 61 (1983) 107; 67 (1983) 293; 70 (1983) 325; 89 (1985) 63; 91 (dy1985) 117.CrossRefGoogle Scholar
  12. 12.
    G. A. El-Shobaky, Th. El-Nabarawy and T. Ghazi, Surface Technol., 15 91982) 153.Google Scholar
  13. 13.
    M. Nachman, L. N. Cojocaru and L. V. Ribco, Phys. Stat. Sol., 8 (1965) 182.Google Scholar
  14. 14.
    R. R. Heiks and W. D. Jonston, J. Chem Phys. (USA), 26 (1975) 583.Google Scholar

Copyright information

© Akadémiai Kiadó 1996

Authors and Affiliations

  • G. A. El-Shobaky
    • 1
  • A. S. Ahmad
    • 2
  • A. N. Al-Noaimi
    • 3
  • H. G. El-Shobaky
    • 2
  1. 1.National Research CentreDokki, Cairo
  2. 2.Chemistry Department, Faculty of ScienceCairo UniversityEgypt
  3. 3.Chemistry Department, Faculty of ScienceQuatar UniversityQuatarEgypt

Personalised recommendations