Advertisement

European Child & Adolescent Psychiatry

, Volume 4, Issue 4, pp 249–258 | Cite as

Identification of behaviour profiles within a population of autistic children using multivariate statistical methods

  • Sylvie Roux
  • Joëlle Malvy
  • Nicole Bruneau
  • Bernard Garreau
  • Pascaline Guérin
  • Dominique Sauvage
  • Catherine Barthélémy
Article

Abstract

The Revised Behaviour Summarized Evaluation Scale (BSE-R) was developed for the objective evaluation of autistic behaviours in order to facilitate the recording of the evolution of developmentally disabled children. Among its 29 items, 13 items that precisely describe the degree of autistic behaviours were extracted by Principal Component Analysis. We hypothesised that these relevant behaviours could differentiate autistic behaviour profiles in a population of children previously diagnosed as typically autistic. For this purpose, we used an original multivariate descriptive statistical approach, Correspondence Analysis, which can help in detecting structural relationships among variables. In a population of autistic children initially diagnosed using DSM-III-R criteria, this procedure proved effective in identifying new main dimensions of behaviours among the 13 previously defined core autistic symptoms. Cluster analysis, which followed factorial analysis, allowed the identification of three meaningful behaviour profiles separated principally on the basis of two main functions, perception and imitation, which have been always considered to be fundamentally involved in autistic syndrome. The individualisation of homogeneous subgroups of children on the basis of the behavioural evaluation provides a potentially useful starting point for further biological and therapeutic studies.

Keywords

Autistic Disorder Behaviour Scale Correspondence Analysis Cluster Analysis 

Résumé

L'échelle d'évaluation résumée des comportements (BSE-R, version révisée) a été développée pour évaluer de façon objective les comportements autistiques afin de faciliter le suivi d'enfants présentant des troubles graves du développement. Parmi les 29 items composant cette échelle, 13 items décrivant précisemment le degré d'autisme ont été extraits par Analyse en Composantes Principales. Nous avons formulé l'hypothèse que ces 13 items étaient capables de différencier des profils comportementaux dans une population d'enfants préalablement diagnostiqués autistes. Pour cela, nous avons utilisé une approche statistique descriptive originale, l'Analyse Factorielle des Correspondances, qui facilite la recherche de relations structurelles entre les variables. Dans une population d'enfants diagnostiqués autistes suivant les critères du DSMIII-R, cette méthode s'est montrée pertinente pour isoler de nouvelles dimensions comportementales parmi les 13 symptômes d'autisme précédemment décrits. La classification automatique, qui a suivi l'analyse factorielle, a permis d'identifier trois profils de comportements qui different principalement par deux fonctions qui ont toujours été considérées comme impliquées dans le syndrome autistique: la perception et l'imitation. L'individualisation de sous-groupes homogènes d'enfants à partir de ce type d'évaluation est une étape importante avant la mise en oeuvre de nouvelles études biologiques ou thérapeutiques.

Zusammenfassung

Die Revised Behaviour Summarized Evaluations Scale (BSE-R) wurde für die objektive Einschätzung autistischer Verhaltensweisen entwickelt, um die Erfassung des Entwicklungsstandes bei entwicklungsgestörten Kindern zu erleichtern. Unter den 29 Items wurden durch Principal Component Analysis 13 Items extrahiert, die genau den Grad der autistischen Verhaltensweisen beschreiben. Wir verfolgten die Hypothese, daß diese relevanten Verhaltensweisen zwischen verschiedenen autistischen Verhaltensprofilen innerhalb einer Stichprobe von Kindern, die zuvor als typisch autistisch diagnostiziert worden waren, weiter aufdifferenzieren könnten. Zu diesem Zweck benutzten wir einen originalen multivariaten deskriptiven statistischen Ansatz (Correspondence Analysis), der helfen kann, strukturelle Beziehungen zwischen Variablen zu erfassen. In einer Stichprobe von Kindern mit Autismus (nach den Diagnose-Kriterien des DSM-III-R) konnten mit diesem Verfahren neue Hauptdimensionen des Verhaltens unter den zuvor definierten autistischen Kernsymptomen identifiziert werden. Eine Clusteranalyse, die auf die Faktorenanalyse folgte, erlaubte die Identifizierung von drei sinnvollen Verhaltensprofilen, die sich im wesentlichen aufgrund zweier Hauptfunktionen, Wahrnehmung und Nachahmung, trennen ließen. Diesen beiden Funktionen wurde immer eine grundlegende Bedeutung für das autistische Syndrom beigemessen. Die Individualisierung von homogenen Subgruppen von Kindern auf der Basis der Verhaltensevaluation liefert einen potentiell nützlichen Ansatzpunkt für weitere biologische und therapeutische Studien.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association. (1987).Diagnostic and Statistical Manual of Mental Disorders (3rd ed., revised). Washington, DC: AuthorGoogle Scholar
  2. American Psychiatric Association. (1994).Diagnostic and Statistical Manual of Mental Disorders (4rd ed.). Washington, DC: AuthorGoogle Scholar
  3. Bartak, L., Rutter, M. & Cox, A.A. (1975). A comparative study of infantile autism and specific developmental receptive language disorder.British Journal of Psychiatry, 126, 127–145.PubMedGoogle Scholar
  4. Barthélémy, C., Adrien, J.L., Roux, S., Garreau, B., Perrot, A. & Lelord, G. (1992). Sensitivity and specificity of the Behavioral Summarized Evaluation (BSE) for the assessment of autistic behaviors.Journal of Autism and Developmental Disorders, 22, 23–31.CrossRefPubMedGoogle Scholar
  5. Barthélémy, C., Adrien, J.L., Tanguay, P., Garreau, B., Fermanian, J., Roux, S., Sauvage, D. & Lelord, G. (1990). The Behavioral Summarized Evaluation: validity and reliability of a scale for the assessment of autistic behaviors.Journal of Autism and Developmental Disorders, 20, 189–204.PubMedGoogle Scholar
  6. Barthélémy, C., Bruneau, N., Adrien, J.L., Roux, S. & Lelord, G. (1990). Clinical, biological and therapeutic applications of the functional analysis of autistic disorders.Brain Dysfunction, 3, 271–284.Google Scholar
  7. Barthélémy, C., Bruneau, N., Jouve, J., Martineau, J., Muh, J.P. & Lelord, G. (1989). Urinary dopamine metabolites as indicators of the responsiveness to fenfluramine treatment in children with autistic behavior.Journal of Autism and Developmental Disorders, 19, 241–254.PubMedGoogle Scholar
  8. Barthélémy, C., Roux, S., Adrien, J.L., Hameury, L., Guérin, P., Garreau, B. & Lelord, G. (1995). Validation of the revised Behavior Summarized Evaluation scale (BSE-R).Journal of Autism and Developmental Disorders, accepted.Google Scholar
  9. Bates, E. (1979).The Emergence of Symbols. New York: Academic Press.Google Scholar
  10. Benzécri, J.P. (1969). Statistical analysis as a tool to make patterns emerge from data. In S. Watanabe (Ed.)Methodologies of Pattern Recognition. (pp. 35–74). New York: Academic Press Inc.Google Scholar
  11. Benzécri, J.P. (1973).L'analyse des données, Tome I: La Taxinomie, Tome II: L'Analyse des Correspondances. Paris: Dunod.Google Scholar
  12. Bergman, P. & Escalona, S.K. (1949). Unusual sensitivities in very young children.The Psychoanalytic Study of the Child, 3, 333–353.Google Scholar
  13. Bruneau, N., Barthélémy, C., Martineau, J., Adrien, J.L., Garreau, B., Muh, J. P. & Lelord, G. (1990). Clinical, electrophysiological, and biochemical markers and monoaminergic hypotheses in autism. In A. Rothenberger (Ed.)Brain and Behavior in Child Psychiatry (pp. 217–234). New York: Springer International.Google Scholar
  14. Bruneau, N., Garreau, B., Roux, S. & Lelord, G. (1987). Modulation of auditory evoked potentials with increasing stimulus intensity in autistic children. In R.J. Johnson, R. Parasuraman, and J.W. Rohrbaugh (Eds.)Current Trends in Event-Related Potential Research (EEG Suppl. 40) (pp. 584–589). Amsterdam: Elsevier.Google Scholar
  15. Brunet, O. & Lézine, I. (1976). Echelle de développement psychomoteur de le première enfance.Le développement psychologique de la première enfance. Second edition. Paris: PUF.Google Scholar
  16. Buitelaar, J.K. (1991).Psychopharmacology of Autism Utrecht, Nederlands.Google Scholar
  17. Castelloe, P. & Dawson, G. (1993). Subclassification of children with autism and pervasive developmental disorder: a questionnaire based on Wing's subgrouping scheme.Journal of Autism and Developmental Disorders, 23, 229–241.CrossRefPubMedGoogle Scholar
  18. Charman, T. & Baron-Cohen, S. (1994). Another look at imitation in autism.Development and Psychopathology, 6, 403–413.Google Scholar
  19. Cohen, DJ., Paul, R. & Volkmar, F.R. (1987). Issues in the classification of pervasive developmental disorders and associated conditions. In D.J. Cohen and A.M. Donnellan (Eds.)Handbook of Autism and Pervasive Developmental Disorders (pp. 20–40). New York: Wiley & Sons.Google Scholar
  20. Coleman, M. (1987). The search for neurological subgroups in autism. In E. Schopler and G. Mesibov (Eds.)Neurobiologkal Issues in Autism (pp. 163–189). New York: Plenum Press.Google Scholar
  21. Dawson, G., Warrenburg, S. & Fuller, P. (1983). Hemisphere functioning and motor imitation in autistic persons.Brain and Cognition, 2, 346–354.CrossRefPubMedGoogle Scholar
  22. DeMyer, M.K., Alpern, G.D., Barton, S., DeMyer, W.E., Churchill, D.W., Hingtgen, J.N., Bryson, C.Q., Pontius, W. & Kimberlin, C. (1972). Imitation in autistic, early schizophrenic and non-psychotic subnormal children.Journal of Autism and Childhood Schizophrenia, 2, 264–287.CrossRefPubMedGoogle Scholar
  23. Eaves, L.C., Ho, H.H. & Eaves, D.M. (1994). Subtypes of autism by cluster analysis.Journal of Autism and Developmental Disorders, 24, 3–22.PubMedGoogle Scholar
  24. Farmer, A.E., McGuffin, P. & Spitznagel, E.L. (1983). Heterogeneity in schizophrenia: A cluster-analytic approach.Psychiatry Research, 8, 1–12.CrossRefPubMedGoogle Scholar
  25. Gillingham, G. (1991). Autism: disability or superability? Designing a therapy based on experiences and feelings as described by individuals with autism.Proceedings from Therapeutic Approaches to Autism Research & Practice. Durham University.Google Scholar
  26. Grandin, T. (1984). My experiences as an autistic child and review of selected litterature.Journal of Orthomolecular Psychiatry, 13, 144–174.Google Scholar
  27. Hammes, J. & Langdell, T. (1981). Precursors of symbol formation and childhood autism.Journal of Autism and Developmental Disorders, 11, 331–346.CrossRefPubMedGoogle Scholar
  28. Heimann, M., Ullstadius, E., Dalhgren, S.O. & Gillberg, C. (1992). Imitation in autism. A preliminary research note.Behavioural Neurology, 5, 219–227.Google Scholar
  29. Hertzig, M.E., Snow, M.E. & Sherman, M. (1989). Affect and cognition in autism.Journal of the American Academy of Child and Adolescent Psychiatry, 28, 195–199.PubMedGoogle Scholar
  30. James, A.L. & Barry, R.J. (1980a). A review of psychophysiology in early onset psychosis.Schizophrenia Bulletin, 6, 506–525.PubMedGoogle Scholar
  31. Jones, V. & Prior, M. (1985). Motor imitation abilities and neurological signs in autistic children.Journal of Autism and Developmental Disorders, 15, 37–46.CrossRefPubMedGoogle Scholar
  32. Kanner, L. (1943). Autistic disturbances of affective contact.Nervous Child, 2, 217–250.Google Scholar
  33. Kistner, J. & Robbins, F. (1986). Brief report: Characteristics of methods of subject selection and description in research on autism.Journal of Autism and Developmental Disorders, 20, 591–593.Google Scholar
  34. Lebart, L., Morineau, A. & Kenneth, M.W. (1984).Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices. New York: John Wiley & Sons Inc.Google Scholar
  35. Lelord, G. (1966). Intérêt des méthodes électrophysiologiques dans l'étude de l'action du film cinématographique chez l'enfant et l'adolescent.Pédopsychiatrie, 1, 159–166.Google Scholar
  36. Lelord, G., Barthélémy, C., Martineau, J., Bruneau, N., Garreau, B. & Hameury, L. (1991). Free acquisition, free imitation, physiological curiosity and exchange and development therapies in autistic children.Brain Dysfunction, 4, 335–347.Google Scholar
  37. Ohta, M. (1987). Cognitive disorders of infantile autism: a study employing the wise, spatial relationships, conceptualization and gesture imitations.Journal of Autism and Developmental Disorders, 17, 45–62.CrossRefPubMedGoogle Scholar
  38. Ornitz, E.M. & Ritvo, E.R. (1968). Perceptual inconstancy in early infantile autism.Archives of General Psychiatry, 18, 76–98.PubMedGoogle Scholar
  39. Ornitz, E.M. (1971). Childhood autism: A disorder of sensorimotor integration. In M. Rutter (Ed.)Infantile Autism: Concepts, Characteristics and Treatment (pp. 50–68). London: Churchill Livingstone.Google Scholar
  40. Ornitz, E.M. (1974). The modulation of sensory input and motor output in autistic children.Journal of Autism and Childhood Schizophrenia, 4, 197–215.PubMedGoogle Scholar
  41. Ornitz, E.M. (1983). The functional neuroanatomy of infantile autism.International Journal of Neuroscience, 19, 85–124.PubMedGoogle Scholar
  42. Ornitz, E.M. (1985). Neurophysiology of infantile autism.Journal of the American Academy of Child Psychiatry, 24, 251–262.PubMedGoogle Scholar
  43. Pretchtl, H.F.R. (1980). The optimality concepts.Early Human Development, 4, 201–205.CrossRefPubMedGoogle Scholar
  44. Rutter, M. & Schopler, E. (1987). Autism and pervasive developmental disorders: Concepts and diagnostic issues.Journal of Autism and Developmental Disorders, 17, 159–186.CrossRefPubMedGoogle Scholar
  45. Siegel, B., Anders, T.F., Ciaranello, R.D., Bienenstock, B. & Kraemer, H.C. (1986). Empirically derived subclassification of the autistic syndrome.Journal of Autism and Developmental Disorders, 16, 275–293.CrossRefPubMedGoogle Scholar
  46. Sigman, M. & Ungerer, J.A. (1984). Attachment behaviors in autistic children.Journal of Autism and Developmental Disorders, 14, 231–244.PubMedGoogle Scholar
  47. Skinner, H.A. & Blashfield, R.K. (1982). Increasing the impact of cluster analysis research: The case of psychiatric classification.Journal of Consulting and Clinical Psychology, 50, 727–735.CrossRefPubMedGoogle Scholar
  48. Volkmar, F.R., Cohen, D.J., Bregman, J.D., Hooks, M.Y. & Stevenson, J.M. (1989). An examination of social sub typologies in autism.Journal of the American Academy of Child and Adolescent Psychiatry, 28, 82–86.PubMedGoogle Scholar
  49. WHO (1986).Classification of mental and behavioural disorders. Geneva: World Health Organization.Google Scholar
  50. Wing, L. & Gould, J. (1979). Severe impairments of social interaction and association abnormalities in children: Epidemiology and classification.Journal of Autism and Developmental Disorders, 9, 11–29.CrossRefPubMedGoogle Scholar
  51. Wing, L. (1988). The continuum of autistic characteristics. In E. Schopler and G. Mesibov (Eds.)Diagnosis and Assessment in Autism. New York: Plenum Press.Google Scholar

Copyright information

© Hogrefe & Huber Publishers 1995

Authors and Affiliations

  • Sylvie Roux
  • Joëlle Malvy
  • Nicole Bruneau
  • Bernard Garreau
  • Pascaline Guérin
  • Dominique Sauvage
  • Catherine Barthélémy
    • 1
  1. 1.Laboratoire de Neurophysiologie du DéveloppementINSERM U316Tours CedexFrance

Personalised recommendations