Transgenic Research

, Volume 5, Issue 6, pp 467–473 | Cite as

Introduction and expression of the bacterial glyoxylate cycle genes in transgenic mice

  • Kulvinder S. Saini
  • Carolyn R. Byrne
  • Zdenka Leish
  • Cathy A. Pruss
  • Nola W. Rigby
  • Alan G. Brownlee
  • Colin D. Nancarrow
  • Kevin A. Ward
Papers

Abstract

The glyoxylate cycle, catalysed by two unique enzymes: isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2), is necessary for the net conversion of acetate into glucose. This metabolic pathway operates in microorganisms, higher plants and nematodes. Two bacterial genes, encoding ICL and MS, were modified in order to introduce them into the mouse germ line. The ovine metallothionein-Ia (MT-Ia) promoter-aceB gene-ovine growth hormone (GH) gene (3′ GH sequence) construct was fused to the ovine MT-Ia promoter-aceA gene-ovine GH gene (3′ GH sequence). Therefore, in this single DNA sequence, bothaceA andaceB are under independent MT-Ia promoter control and can be induced by zinc. Transgenic mice were generated by pronuclear microinjection of theaceB-aceA gene construct. We now report the establishment of four mouse lines carying these two transgenes. Studies on the progeny of these lines indicate that one line (No. 91) is expressing both genes at the mRNA and enzyme levels in the liver and intestine, whereas another line (No. 66) has a much lower expression. Both enzyme activities were detected in the liver and intestine at levels up to 25% of those measured in fully derepressedEscherichia coli cells.

Keywords

glyoxylate cycle isocitrate lysae malate synthase microinjection transgenic mice expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Byrne, C.R. (1990) The isolation of bacterial acetate metabolism genes and their expression in a eukaryote. Ph.D. thesis. CSIRO and Macquarie University, Sydney, Australia.Google Scholar
  2. Cioni, M., Pinzanti, G. and Vanni, P. (1981) Comparative biochemistry of the glyoxylate cycle.Comp. Biochem. Physiol. 70B, 1–26.Google Scholar
  3. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–9.PubMedGoogle Scholar
  4. Costantini, F. and Lacy, E. (1981) Introduction of a rabbit β-globin gene into the mouse germ line.Nature 294, 92–4.CrossRefPubMedGoogle Scholar
  5. Davis, W.L. and Goodman, D.B.P. (1992) Evidence for the glyoxylate cycle in human liver.Anat. Rec. 234, 461–68.CrossRefPubMedGoogle Scholar
  6. Dixon, G.H. and Kornberg, H.L. (1959) Assay methods for key enzymes of the glyoxylate cycle.Biochem. J. 72, 3P.Google Scholar
  7. Feinberg, A.P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 132, 6–13.CrossRefPubMedGoogle Scholar
  8. Holmes, R.P. (1993) The absence of glyoxylate cycle enzymes in rodent and embryonic chick liver.Biochim. Biophys. Acta 1158, 47–51.PubMedGoogle Scholar
  9. Jhappan, C., Geiser, A.G., Kordon, E.C., Bagheri, D., Hennighausen, L., Roberts, A.B., Smith, G.H. and Merlino, G. (1993) Targeting expression of a transforming growth factor β1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.EMBO J. 12, 1835–45.PubMedGoogle Scholar
  10. Leish, Z., Byrne, C.R., Hunt, C.L. and Ward, K.A. (1993) Introduction and expression of the bacterial genescysE andcysK in eukaryotic cells.Appl. Environ. Microbiol. 59, 892–8.PubMedGoogle Scholar
  11. Liang, C.C. and Ou, L.C. (1971) Formation of malate from glyoxylate in animal tissues.Biochem. J. 121, 447–52.PubMedGoogle Scholar
  12. Lindsay, D.B. (1978) Gluconeogenesis in ruminants.Biochem. Soc. Trans. 6, 1152–6.PubMedGoogle Scholar
  13. Lowry, O., Rosebrough, A.L., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the folin phenol reagent.J. Biol. Chem. 193, 265–75.PubMedGoogle Scholar
  14. Maloy, S.R., Bohlander, M. and Nunn, W.D. (1980) Elevated levels of glyoxylate shunt enzymes inEscherichia coli strains constitutive for fatty acid degradation.J. Bacteriol. 43, 720–5.Google Scholar
  15. Missero, C., Serra, C., Stenn, K. and Dotto, G.P. (1993) Skin-specific expression of a truncated E1a oncoprotein binding to p105-Rb leads to abnormal hair follicle maturation without increased epidermal proliferation.J. Cell Biol. 121, 1109–20.CrossRefPubMedGoogle Scholar
  16. Murray, J.M., Nancarrow, C.D., Marshall, J.T., Hazelton, I.G. and Ward, K.A. (1989) Production of transgenic merino sheep by microinjection of ovine metallothionein-ovine growth hormone fusion genes.Reprod. Fert. Devl. 1, 147–55.Google Scholar
  17. Neidhardt, C., Bloch, P.L. and Smith D.F. (1974) Culture medium for enterobacteria.J. Bacteriol. 119, 736–47.PubMedGoogle Scholar
  18. Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Binberg, N.C. and Evans, R.M. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.Nature 300, 611–5.CrossRefPubMedGoogle Scholar
  19. Peterson, M.G. and Mercer, J.F.B. (1986) Structure and regulation of the sheep metallothionein-Ia gene.Eur. J. Biochem. 160, 579–85.CrossRefPubMedGoogle Scholar
  20. Qureshi, A.A., Elson, C.E. and Lebeck, L.A. (1982) Application of high-performance liquid chromatography to the determination of glyoxylate synthesis in chick embryo liver.J Chromatogr. 249, 333–45.CrossRefPubMedGoogle Scholar
  21. Saini, K., Steele, G. and Thomas, P. (1990) Induction of carcinoembryonic-antigen-gene expression in human colorectal carcinoma by sodium butyrate.Biochem. J. 272, 541–4.PubMedGoogle Scholar
  22. Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd Ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  23. Shanahan, C.M., Rigby, N.W., Murray, J.D., Marshall, J.T., Townrow, C.A., Nancarrow, C.D. and Ward, K.A. (1989) Regulation of expression of a sheep metallothionein Ia-sheep growth hormone fusion gene in transgenic mice.Mol. Cell. Biol. 9, 5473–9.PubMedGoogle Scholar
  24. Vanni, P., Giachetti, E., Pinzauti, G. and McFadden, B.A. (1990) Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme.Comp. Biochem. Physiol. 95B, 431–58.Google Scholar
  25. Ward, K.A. and Nancarrow, C.D. (1991) The genetic engineering of production traits in domestic animals.Experientia 47, 913–22.CrossRefPubMedGoogle Scholar
  26. Ward, K.A., Leish, Z., Bonsing, J., Nishimura, N., Cam, G.R., Brownlee, A.G. and Nancarrow, C.D. (1994) Preventing hair loss in mice.Nature 371, 563–4.CrossRefPubMedGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Kulvinder S. Saini
    • 1
  • Carolyn R. Byrne
    • 1
  • Zdenka Leish
    • 1
  • Cathy A. Pruss
    • 1
  • Nola W. Rigby
    • 1
  • Alan G. Brownlee
    • 1
  • Colin D. Nancarrow
    • 1
  • Kevin A. Ward
    • 1
  1. 1.CSIRO Division of Animal ProductionProspectAustralia

Personalised recommendations