Transgenic Research

, Volume 5, Issue 6, pp 413–420 | Cite as

PCR-based gene targeting of the inducible nitric oxide synthase (NOS2) locus in murine ES cells, a new and more cost-effective approach

  • David A. Randolph
  • James W. Verbsky
  • Liping Yang
  • Yifu Fang
  • Razqallah Hakem
  • Larry E. Fields
Papers

Abstract

Gene targeting by double homologous recombination in murine embryonic stem (ES) cells is a powerful tool used to study the cellular consequences of specific genetic mutations. A typical targeting construct consists of a neomycin phosphotransferase (neo) gene flanked by genomic DNA fragments that are homologous to sequences in the target chromosomal locus. Homologous DNA fragments are typically cloned from a murine genomic DNA library. Here we describe an alternative approach whereby the inducible nitric oxide synthase (NOS2) gene locus is partially mapped and homologous DNA sequences obtained using a long-range PCR method. A 7 kb NOS2 amplicon is used to construct a targeting vector where theneo gene is flanked by PCR-derived homologous DNA sequences. The vector also includes a thymidine kinase (tk) negative-selectable marker gene. Following transfection into ES cells, the PCR-based targeting vector undergoes efficient homologous recombination into the NOS2 locus. Thus, PCR-based gene targeting can be a valuable alternative to the conventional cloning approach. It expedites the acquisition of homologous genomic DNA sequences and simplifies the construction of targeting plasmids by making use of defined cloning sites. This approach should result in substantial time and cost savings for appropriate homologous recombination projects.

Keywords

homologous recombination inducible nitric oxide synthase embryonic stem cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adra, C.N., Boer, P.H. and McBurney, M.W. (1987) Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter.Gene 60, 65–74.CrossRefPubMedGoogle Scholar
  2. Bronson, S.K. and Smithies, O. (1994) Altering mice by homologous recombination using embryonic stem cells.J. Biol. Chem. 269, 27155–8.PubMedGoogle Scholar
  3. Chartrain, N.A., Geller, D.A., Koty, P.P., Sitrin, N.F., Nussler, A.K., Hoffman, E.P., Billiar, T.R., Hutchinson, N.I. and Mudgett, J.S. (1994) Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene.J. Biol. Chem. 269, 6765–72.PubMedGoogle Scholar
  4. Chen, P.F., Tsai, A.L. and Wu, K.K. (1994) Cysteine 184 of endothelial nitric oxide synthase is involved in heme coordination and catalytic activity.J. Biol. Chem. 269, 25062–6.PubMedGoogle Scholar
  5. Cheng, S., Fockler, C., Barnes, W.M. and Higuchi, R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA.Proc. Natl Acad. Sci. USA 91, 5695–9.PubMedGoogle Scholar
  6. Chisaka, O. and Capecchi, M.R. (1991) Regionally restricted developmental defects resulting from targeted.Nature 350, 473–9.CrossRefPubMedGoogle Scholar
  7. Deng, C. and Capecchi, M.R. (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus.Mol. Cell. Biol. 12, 3365–71.PubMedGoogle Scholar
  8. Dinerman, J.L., Lowenstein, C.J. and Snyder, S.H. (1993) Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease.Circ. Res. 73, 217–22.PubMedGoogle Scholar
  9. Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. and Kemler, R. (1985) Thein vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium.J. Embryol. Exp. Morph. 87, 27–45.PubMedGoogle Scholar
  10. Geller, D.A., Lowenstein, C.J., Shapiro, R.A., Nussler, A.K., Di Silvio M., Wang, S.C., Nakayama, D.K., Simmons, R.L., Snyder, S.H. and Billiar, T.R. (1993) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes.Proc. Natl Acad. Sci. USA 90, 3491–5.PubMedGoogle Scholar
  11. Handyside, A.H., O'Neill, G.T.O., Jones, M. and Hooper, M.L. (1989) Use of BRL-conditioned medium in combination with feeder layers to isolate a diploid embryonal stem cell line.Roux's Arch. Dev. Biol. 198, 48–55.CrossRefGoogle Scholar
  12. Hasty, P. and Bradley, A. (1993) Gene targeting vectors for mammalian cells. In: Joyner, A.L. ed.,Gene Targeting: a Practical Approach, pp. 1–31. Oxford: IRL Press at Oxford University Press.Google Scholar
  13. Hasty, P., Rivera-Perez, J. and Bradley, A. (1991) The length of homology required for gene targeting in embryonic stem cells.Mol. Cell. Biol. 11, 5586–5591.PubMedGoogle Scholar
  14. Higuchi, R. (1989) Using PCR to engineer DNA. In: Erlich, H.A. ed.,PCR Technology: Principles and Applications for DNA Amplifications, pp. 61–70. New York: Stockton.Google Scholar
  15. Kitamura, D., Roes, J., Kuhn, R. and Rajewsky, K. (1991) A B cell-deficient mouse by targeted disruption of the membrane exon.Nature 350, 423–6.CrossRefPubMedGoogle Scholar
  16. Kuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S.S. and Flavell, R.A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1-beta converting enzyme.Science 267, 2000–3.PubMedGoogle Scholar
  17. Lee, K.F., Li, E., Huber, L.J., Landis, S.C., Sharpe, A.H., Chao, M.V. and Jaenisch, R. (1992) Targeted mutation of the gene encoding the low affinity NGF receptor.Cell 69, 737–49.CrossRefPubMedGoogle Scholar
  18. Li, E., Bestor, T.H. and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in.Cell 69, 915–26.CrossRefPubMedGoogle Scholar
  19. Lowenstein, C.J., Glatt, C.S., Bredt, D.S. and Snyder, S.H. (1992) Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme.Proc. Natl Acad. Sci. USA 89, 6711–5.PubMedGoogle Scholar
  20. Lueders, K.K. and Fewell, J.W. (1994) Hybridization of DNA in dried gels provides increased sensitivity compared with hybridization to blots.Biotechniques 16, 66–7.PubMedGoogle Scholar
  21. Lyons, C.R., Orloff, G.J. and Cunningham, J.M. (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line.J. Biol. Chem. 267, 6370–4.PubMedGoogle Scholar
  22. Mansour, S.L., Thomas, K.R., Deng, C.X. and Capecchi, M.R. (1990) Introduction of alacZ reporter gene into the mouse int-2 locus by homologous recombination.Proc. Natl Acad. Sci. USA 87, 7688–92.PubMedGoogle Scholar
  23. Martin, G.R. and Evans, M.J. (1975) The formation of embryoid bodiesin vitro by homogeneous embryonal carcinoma cell cultures derived from irolated single cells. In: Sherman, M.I. and Solter, D. eds.,Teratomas and Differentiation, pp. 169–187. New York: Academic Press.Google Scholar
  24. McMahon, A.P. and Bradley, A. (1990) The Wnt-1 (int-1) protooncogene is required for development of a large region of the mouse brain.Cell 62, 1073–85.CrossRefPubMedGoogle Scholar
  25. Melton, D.W. (1994) Gene targeting in the mouse.BioEssays 16, 633–38.CrossRefPubMedGoogle Scholar
  26. Nathan, C. and Xie, Q.W. (1994a) Regulation of biosynthesis of nitric oxide.J. Biol. Chem. 269, 13725–8.PubMedGoogle Scholar
  27. Nathan, C. and Xie, Q.W. (1994b) Nitric oxide synthases: roles, tolls, and controls.Cells 78, 915–8.CrossRefGoogle Scholar
  28. Ochman, H., Ajioka, J.W., Garza, D. and Hartl, D.L. (1989) Inverse polymerase chain reaction. In: Erlich, H.A. ed.,PCR Technology: Principles and Applications for DNA Amplifications, pp. 105–11. New York: Stockton.Google Scholar
  29. Ramirez-Solis, R., Davis, A. and Bradley, A. (1993) Gene targeting in embryonic stem cells. In: Wasserman, P.M. and DePamphilis, M.L. eds.,Guide to Techniques in Mouse Development, pp. 855–878. New York: Academic Press.Google Scholar
  30. Raschke, W.C., Baird, S., Ralph, P. and Nakoinz, I. (1978) Functional macrophage cell lines transformed by Abelson leukemia virus.Cell 15, 261–7.CrossRefPubMedGoogle Scholar
  31. Reaume, A.G., Desousa, P.A., Kulkarni, S., Langille, B.L., Zhu, D.G., Davies, T.C., Juneja, S.C., Kidder, G.M. and Rossant, J. (1995) Cardiac malformation in neonatal mice lacking connexin43.Science 267, 1831–4.PubMedGoogle Scholar
  32. Riele, H. te., Maandag, E.R. and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs.Proc. Natl Acad. Sci. USA 89, 5128–32.PubMedGoogle Scholar
  33. Robbins, J. (1993) Gene targeting. The precise manipulation of the mammalian genome.Circ. Res. 73, 3–9.PubMedGoogle Scholar
  34. Routtenberg, A. (1995) Knockout mouse fault lines.Nature 374, 314–5.CrossRefPubMedGoogle Scholar
  35. Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA seuquencing with chain-terminating inhibitors.Proc. Natl Acad. Sci. USA 74, 5463–7.PubMedGoogle Scholar
  36. Scharf, S.J., Horn, G.T. and Erlich, H.A. (1986) Direct cloning and sequence analysis of enzymatically amplified genomic sequences.Science 233, 1076–8.PubMedGoogle Scholar
  37. Shastry, B.S. (1994) More to learn from gene knockouts.Mol. Cell. Biochem. 136, 171–82.CrossRefPubMedGoogle Scholar
  38. Soriano, P. (1995) Gene targeting in ES cells.Annu. Rev. Neurosci. 18, 1–18.CrossRefPubMedGoogle Scholar
  39. Soriano, P., Montgomery, C., Geske, R. and Bradley, A. (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice.Cell 64, 693–702.CrossRefPubMedGoogle Scholar
  40. Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98, 503–17.PubMedGoogle Scholar
  41. Tarakhovsky, A., Muller, W. and Rajewsky, K. (1994) Lymphocyte populations and immune responses in CD5-deficient mice.Eur. J. Immunol. 24, 1678–84.PubMedGoogle Scholar
  42. Thomas, K.R. and Capecchi, M.R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells.Cell 51, 503–12.CrossRefPubMedGoogle Scholar
  43. Tsao, S.G., Brunk, C.F. and Pearlman, R.E. (1983) Hybridization of nucleic acids directly in agarose gels.Anal. Biochem. 131, 365–72.CrossRefPubMedGoogle Scholar
  44. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. and Mulligan, R.C. (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of thec-abl protooncogene.Cell 65, 1153–63.CrossRefPubMedGoogle Scholar
  45. Uvarov, V.Y. and Lyashenko, A.A. (1995) The identification of the pterin-binding domain in the nitric oxide synthase's sequence.Biochem. Biophys. Res. Commun. 206, 736–41.CrossRefPubMedGoogle Scholar
  46. Xie Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T. and Nathan, C. (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.Science 256, 225–8.PubMedGoogle Scholar
  47. Xie, Q.W., Cho, H., Kashiwabara, Y., Baum, M., Weidner, J.R., Elliston, K., Mumford, R. and Nathan, C. (1994) Carboxyl terminus of inducible nitric oxide synthase. Contribution to NADPH binding and enzymatic activity.J. Biol. Chem. 269, 28500–5.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • David A. Randolph
    • 1
  • James W. Verbsky
    • 1
  • Liping Yang
    • 1
  • Yifu Fang
    • 1
  • Razqallah Hakem
    • 1
  • Larry E. Fields
    • 1
  1. 1.Departments of Medicine and Pathology, Divisions of Cardiology and Biology and Biomedical SciencesWashington University School of MedicineSt. LouisUSA

Personalised recommendations