Advertisement

Journal of thermal analysis

, Volume 48, Issue 3, pp 557–567 | Cite as

Use of subambient DSC for liquid and semi solid dosage forms

Pharmaceutical product development and quality control
  • E. Schwarz
  • S. Pfeffer
2nd Symposium and Workshops on Pharmacy and Thermal Analysis (PhandTA 2)

Abstract

Examples of the use of subambient DSC for characterizing excipients which have the melting range within ambient or subambient temperatures as well as liquid and semiliquid dosage forms are presented in the following paper.

Influences of the quality, polymorphism, storage of excipients used for dosage forms and changes in the composition on the melting behaviour and quality of dosage forms were investigated.

Changes of the melting behaviour of dosage forms determined with subambient DSC have shown to correlate with the quality of the dosage form, the quality of excipients used or structural changes (due to various influences) in the dosage form. DSC for use in the range of subambient and ambient temperatures represents an alternative analytical method for development and quality assurance in pharmaceutical industry for liquid and semiliquid preparations.

Keywords

liquid preparations physical characterization quality assurance of dosage forms semi-solid preparations subambient DSC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Klokkers, Acta Pharm. Technol., 31 (1985) 151.Google Scholar
  2. 2.
    K. Klokkers, Acta Pharm. Technol., 30 (1984) 10.Google Scholar
  3. 3.
    H. Junginger, Pharm. Weekblad Sci. Ed., V6 (1984) 141.Google Scholar
  4. 4.
    G. Eccleston, Drug Develop. Ind. Pharm., 14 (1988) 2499.Google Scholar
  5. 5.
    G. Eccleston, Int. J. Pharm., 27 (1985) 311.CrossRefGoogle Scholar
  6. 6.
    P. Mura et al., Int. J. Pharm., 119 (1995) 71.CrossRefGoogle Scholar
  7. 7.
    L. Potier, Thermochim. Acta, 204 (1992) 145.CrossRefGoogle Scholar
  8. 8.
    U. Lashmar et al., Int. J. Pharm., 125 (1995) 315.CrossRefGoogle Scholar
  9. 9.
    R. Gordon et al., Int. J. Pharm., 21 (1984) 99.CrossRefGoogle Scholar
  10. 10.
    G. Indrayanto et al., Drug Develop. Ind. Pharm., 20 (1994) 911.Google Scholar
  11. 11.
    C Z. Chowhan, Pharm. Technol., Eur. November, (1993) 33.Google Scholar
  12. 12.
    L. Cohen, Pharm. Technol., Eur. January, (1994) 14.Google Scholar
  13. 13.
    M. Gray et al., JAOCS, 55 (1978) 601.Google Scholar
  14. 14.
    I. Norton et al., JAOCS, 62 (1985) 1237.Google Scholar
  15. 15.
    D. Kodali et al., JAOCS, 61 (1984) 1078.Google Scholar
  16. 16.
    L. Hernqvist, Fat Sci. Technol., 90 (1988) 451.Google Scholar
  17. 17.
    D. Kodali et al., J. Lipid Research, 31 (1990) 1853.Google Scholar
  18. 18.
    T. Arishima, JOACS, 66 (1989) 1614.Google Scholar
  19. 19.
    D. Dorset et al., Chem. Phys. Lipids, 48 (1988) 19.CrossRefPubMedGoogle Scholar
  20. 20.
    D. Giron, Thermochim. Acta, 248 (1995) 1.CrossRefGoogle Scholar
  21. 21.
    J. Sarciaux et. al., Int. J. Pharm., 120 (1995) 127.CrossRefGoogle Scholar
  22. 22.
    Ch. Müller-Goymann, Pharm. Research, (1984) 154.Google Scholar
  23. 23.
    G. Eccleston, J. Soc. Chem., 41 (1990) 1.Google Scholar
  24. 24.
    H. Tiemessen, Progr. Colloid Polymer Sci., 77 (1988) 131.Google Scholar
  25. 25.
    H. Junginger, Topics in Pharm. Sci., (1985) 329.Google Scholar
  26. 26.
    G. Eccleston, Pharm. Int. March, (1986) 63.Google Scholar
  27. 27.
    Ch. Müller-Goymann, Acta Pharm. Technol., 35 (1989) 116.Google Scholar
  28. 28.
    Ch. Müller-Goymann, Progr. Colloid Polymer Sci., 69 (1984) 56.Google Scholar
  29. 29.
    H. Junginger, DAZ, 131 (1991) 1933.Google Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • E. Schwarz
    • 1
  • S. Pfeffer
    • 1
  1. 1.Analytical R&D, Technical DepartmentSandoz PharmaBaselSwitzerland

Personalised recommendations