Journal of thermal analysis

, Volume 47, Issue 4, pp 941–955 | Cite as

Crystallization, melting and spherulitic structure of Β-nucleated random propylene copolymers

  • J. Varga
  • F. Schulek-Tóth


The characteristics of crystallization, melting and spherulitic growth of a random propylene copolymer (PRC) containing small amount of ethylene were studied in the presence of a selective Β-nucleating agent (calcium pimelate). It was established that the products of isothermal and non-isothermal crystallization are very rich in Β-modification but have mixed polymorphic composition. The formation of α-modification may be attributed to Βα-transition on the surface of growing Β-spherulites resulting in αΒ-twin-spherulites. During melting of PRC of Β-modification, the characteristics observed with Β-nucleated propylene homopolymers, namely, a Βα-recrystallization of recooled samples and separated melting of non-recooled samples (i.e. the melting memory effect), as well as a ΒΒ-recrystallization leading to a perfection of the structure within the Β-modification, are also demonstrated. The disturbance of regularity of the polymer chain highly reduces the tendency to Β-crystallization. In contrast to the observations with propylene homopolymers, the growth rate of α-modification (Gα) is higher than that of Β-modification (Gβ) and no critical crossover temperature can be found (T(Βα)=413 K) below whichGα>Gβ. The experimental results show that a partial disturbance of chain regularity by incorporation of comonomer units considerably reduces the tendency to Β-crystallization.


characterization crystallization propylene copolymers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Varga, Crystallization, Melting and Supermolecular Structure of Isotactic Polypropylene. In “Polypropylene: Structure, Blends and Composites”;. Ed. J. Karger Kocsis. Vol.1. Structure and Morphology, Chapter 3. Chapman and Hall. London, 1994, pp. 56–115.Google Scholar
  2. 2.
    J. Varga, J. MaterialssScience, 27 (1992) 2557.CrossRefGoogle Scholar
  3. 3.
    B. Monasse and J. M. Haudin, Colloid Polymer Sci., 266 (1988) 679.CrossRefGoogle Scholar
  4. 4.
    T. Sterzynksi, M. Lambla and H. Crozier, Advances in Polymer Technology, 13 (1994) 25.CrossRefGoogle Scholar
  5. 5.
    R. Zhang, H. Zheng and D. Ma, J. Appl. Polymer Sci., 51 (1994) 51.CrossRefGoogle Scholar
  6. 6.
    R. G. Alamo, L. Lu and L. Mandelkern, Polymer Preprints, 35 (1994) 410.Google Scholar
  7. 7.
    G. Wiberg, P. E. Werner and U. W. Gedde, Materials Sci. Eng., A173 (1993) 173.CrossRefGoogle Scholar
  8. 8.
    X. Zhang and G. Shy, Thermochimica Acta, 235 (1994) 49.CrossRefGoogle Scholar
  9. 9.
    J. Varga, J. Thermal Anal., 31 (1986) 165.CrossRefGoogle Scholar
  10. 10.
    J. Varga and G. Garzó, A. Ille: Angew. Makromol. Chem., 142 (1986) 171.CrossRefGoogle Scholar
  11. 11.
    J. Varga and G. Garzó, Acta Chimica Hungarica, 128 (1991) 303.Google Scholar
  12. 12.
    J. D. Hoffmann and J. J. Weeks, J. Res. Natl. Bur. Stand., 66A (1962) 13.Google Scholar
  13. 13.
    J. Varga, A. Solti and J. Menczel, Periodica Polytechnica Chem. Eng., 22 (1978) 297.Google Scholar
  14. 14.
    J. Varga, Angew. Makromol. Chem., 108 (1982) 79.CrossRefGoogle Scholar
  15. 15.
    J. Varga, A. Ille and Y. Fujiwara, Periodica Polytechnica Chem. Eng., 34 (1990) 255.Google Scholar
  16. 16.
    J. Varga, J. Thermal Anal., 35 (1989) 1891.CrossRefGoogle Scholar

Copyright information

© Wiley Heyden Ltd., Chichester and Akadémiai Kiadó, Budapest 1996

Authors and Affiliations

  • J. Varga
    • 1
  • F. Schulek-Tóth
    • 1
  1. 1.Department of Plastics and RubberTechnical University of BudapestBudapestHungary

Personalised recommendations