Journal of thermal analysis

, Volume 38, Issue 4, pp 899–905 | Cite as

Pyridin type complexes of transition-metalhalides

I. Preparation, characterization and thermal analysis studies of cobalt(II)-chlorides with 2,3,4-methylpyridines
  • G. Liptay
  • G. Kenessey
  • L. Bihátsi
  • T. Wadsten
  • J. Mink
Article

Abstract

A large number of Co-picoline-chlorides were prepared from different reaction media by changing the Co: picoline molar ratio.

A new solid-gas phase method is described to prepare ternary mixed Co-picoline complexes containing different picolines.

According to the thermal and spectral investigations the ligand chemisorption from the vapour phase depends on the stability of the solid complex and the complex formation ability of the ligand in the gas phase.

Keywords

complexes of transition-metal-halides TA studies far-IR 

Zusammenfassung

In verschiedenen Reaktionsmedien wurden unter Änderung des Co: Pikolin Verhältnisses eine große Anzahl verschiedener C-Pikolinchloride hergestellt.

Es wird eine neue Fest-Gas-Phasenmethode zur Herstellung ternärer Co-Pikolinmischkomplexe mit verschiedenen Pikolinen beschrieben.

Entsprechend den thermischen und spektralen Untersuchungen hängt die Chemisorption der Liganden aus der Dampfphase von der Stabilität des festen Komplexes und vom Komplexbildungsvermögen des Liganden in der Gasphase ab.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Allan, D. H. Brown, R. H. Nuttall and D. W. A. Sharp, J. Inorg. Nucl. Chem., 26 (1964) 1895.Google Scholar
  2. 2.
    C. T. Mortimer and J. L. McNaughton, Thermochim. Acta, 10 (1974) 125.Google Scholar
  3. 3.
    D. A. Thornton and P. M. F. Vehoeven, Thermochim. Acta, 113 (1987) 161.Google Scholar
  4. 4.
    G. Beech, C. T. Mortimer and E. G. Tyler, J. Chem. Soc., A (1967) 925.Google Scholar
  5. 5.
    G. Liptay, K. Burger and I. Porubszky, Magy. Ké. Foly., 77 (1971) 85.Google Scholar
  6. 6.
    G. Liptay, G. Nagy and A. Borbély-Kuszmann, Thermochim. Acta, 93 (1985) 97.Google Scholar
  7. 7.
    J. de O. Cabral, H. C. A. King, S. M. Nelson, T. M. Shephard and E. Körös, J. Chem. Soc., A (1966) 1348.Google Scholar
  8. 8.
    N. S. Gill, R. H. Nuttal, D. E. Scaife and D. W. A. Sharp, J. Inorg. Nucl. Chem., 18 (1961) 79.Google Scholar
  9. 9.
    R. J. H. Clark and C. S. Williams, Inorg. Chem., 4 (1965) 350.Google Scholar
  10. 10.
    C. W. Frank and L. B. Rogers, Inorg. Chem., 5 (1966) 614.Google Scholar
  11. 11.
    J. R. Allan, D. H. Brown, R. H. Nuttall and D. W. A. Sharp, J. Inorg. Nucl. Chem., 27 (1965) 1305.Google Scholar
  12. 12.
    W. Darby and L. M. Vallarino, Inorg. Chim. Acta, 48 (1985) 215.Google Scholar
  13. 13.
    D. G. Brewer, P. T. T. Wong and M. C. Sears, Can. J. Chem., 18 (1961) 88.Google Scholar
  14. 14.
    N. S. Gill and R. S. Nyholm, J. Inorg. Nucl. Chem., 18 (1961) 88.Google Scholar
  15. 15.
    M. Keeton, A. B. P. Lever and B. S. Ramaswamy, Spectrochim. Acta, 26A (1970) 2173.Google Scholar
  16. 16.
    S. Akyuz, J. E. D. Davies and K. T. Holmes, J. Mol. Struct., 42 (1977) 59.Google Scholar

Copyright information

© Wiley Heyden Ltd, Chichester and Akadémiai Kiadó, Budapest 1992

Authors and Affiliations

  • G. Liptay
    • 1
  • G. Kenessey
    • 1
  • L. Bihátsi
    • 1
  • T. Wadsten
    • 2
  • J. Mink
    • 3
  1. 1.Technical University of BudapestBudapestHungary
  2. 2.Res.& Dev. Wab StockholmSweden
  3. 3.Isotope LaboratoryHungarian Academy of SciencesBudapestHungary

Personalised recommendations